
Chapter 2. DSL and Source to Source Compilation: the
Clava+LARA approach

João Bispo, Pedro Pinto, and João M.P. Cardoso

Faculty of Engineering, University of Porto, Porto, Portugal
{jbispo@fe.up.pt, p.pinto@fe.up.pt, jmpc@fe.up.pt

Abstract

Clava is a source to source (C++ to C++) compiler entirely developed during the
ANTAREX project. It includes an aspect-oriented programming approach, implemented
by an internal weaver and the technology provided by the LARA DSL, in order to describe
source-to-source strategies, such as code transformations and instrumentation. In most
cases, the strategies are applied offline and/or translated to code in the target program-
ming language and embedded in the application code. The version of Clava presented in
this chapter is able to compile a wide range of applications, and several kinds of strategies
have been written in the ANTAREX DSL, including auto-parallelization, design space ex-
ploration, source-code generation and automatic integration of other ANTAREX libraries
and tools. In addition to the capability for code transformations, code instrumentation,
and code injection for integration of runtime autotuning and adaptivity schemes, Clava
also includes data dependence analysis stages that are used by the autoparallelizer via
OpenMP directives. This chapter presents the Clava compiler how the interaction with
LARA works and includes a number of examples (with all software code available) showing
some of the advantages and usefulness of the approach.

1 Introduction and Motivation
Trade-offs are, arguably, one of the cornerstones of engineering, and when writing software there
are many kinds of trade-offs that can be done. For instance, code can be written to be more
readable, or more efficient; to use less memory, or computation; be more generic, or specialized
to a given platform. There is no ”unique” correct implementation for a piece of code, and is
instead highly contingent on the non-functional requirements [1] and target platforms.

Heterogeneous architectures include, in the same system, different targets (e.g., CPUs,
GPUs, FPGAs) which might be better suited to certain jobs than others, according to a given
metric (e.g., execution time, power and energy consumption). While these architectures have
been the norm in domains such as Embedded Computing, problems such as power dissipation [2]
have been driving the adoption of heterogeneous architectures in other domains (e.g., data-
centers [3], High-Performance Computing (HPC) [4]). Heterogeneous architectures further
exacerbate the problem of writing software that fully takes advantage of the target platform.
Writing code that efficiently takes advantage of a single target (e.g., Intel CPU) is not easy and
requires expert domain knowledge. Having several different targets in the same system makes
the problem even more complex.

2.1

mailto:jbispo@fe.up.pt@fe.up.pt
mailto:p.pinto@fe.up.pt@fe.up.pt
mailto:jmpc@fe.up.pt@fe.up.pt

C and C++ are programming languages that favor performance and efficiency over other
characteristics, such as compilation time, or convenience [5]. They are relatively low-level
and close to the hardware, and usually allow fine-grained control of system resources (e.g.,
memory, co-processors). C and C++ are still widely used to program platforms in fields
such as Embedded Computing and HPC. However, due to the focus these languages have
in performance, they may lack features that are commonplace in other widely used languages
(e.g., garbage collection, comprehensive reflection support).

There have been many efforts to manage the complexity of programming heterogeneous
systems. A common and successful approach is to develop libraries and compiler-supported
extensions for a given language (e.g., OpenMP [6] and Threading Building Blocks [7], for
C/C++). Libraries and language extensions can encapsulate complex functionality around
interfaces that can greatly help to take advantage of a platform. However, it can be non-trivial
to correctly apply them. For instance, it is relatively common for inexperienced users to obtain
worse performance from an application when naively applying a parallelization framework such
as OpenMP1. Also, changes related to performance and efficiency usually require a profiling
step as well as several test steps, and activity where the code is manually changed and that
can be error-prone and time consuming.

Another approach is to develop a new language that specifically handles a certain problem
or set of problems (Domain Specific Languages, or DSLs). An advantage of DSLs over previous
approaches is that they have the potential to express a solution to the domain problem more
concisely and in a clearer way. This can also diminish the introduction of errors, or inefficient
idioms. On the downside, DSLs introduce the overhead of having to learn a new language,
and usually are not as integrated in the compilation tool-flow as native libraries or compiler-
supported extensions.

DSLs can be very general, or incredibly specific. OpenCL [8] is an example of a DSL which
can express general-purpose computation, as is used to write programs that are functionally
portable across heterogeneous platforms (although not performance portable [9]). On the other
hand, CHiLL [10] is a declarative language that specifies sequences of (predefined) transforma-
tions and constrains that are to be applied to existing source-code.

This chapter presents Clava, a source-to-source compilation framework for C/C++2 that
allows to express analysis and transformation strategies using LARA [11], a JavaScript-based
DSL for source code analysis and manipulation.

With this framework, we intend to provide the necessary tools for domain experts to be
able to encode their knowledge in reusable strategies for C/C++, written in LARA. Section 2
presents the framework, how it is organized and how it was implemented.

Furthermore, we developed and extended several support tools for the scripting language
LARA, such as a documentation generator, a unit testing framework and a standard library.
Section 3 presents this work.

Clava was developed to be flexible enough to allow a wide-range of solutions, from code
generation to design-space exploration. Section 4 describes use cases from several Clava users.
Section 5 presents several approaches that either inspired or are similar to what Clava does,
and Section 6 concludes this chapter.

1Parallelization usually introduces overhead, due to the creation of additional processes/threads and the
synchronization between them.

2Clava also supports OpenCL code, and software applications that mix both C/C++ and OpenCL

2.2

App 1

App 2

App N

+ Strategy =
Design 1

Design 2

Design N

Reusable Strategies

Stragey 1

Strategy 2

Strategy N

+App =
Design 1

Design 2

Design N

Custom Targetability

Strategy +App =
Design 1

Design 2

Design N

Design Exploration

Design
Parameters

Figure 1: Generic Clava use cases.

LARA
Framework

LARA
Strategy

Clava Weaver Clava AST
Parser

Clava AST
Dumper

Clava
AST

Code
Data

C/C++
Program

Java C++

C/C++ Front-end

Modified
C/C++

Program

Figure 2: Diagram of the structure of the Clava framework.

2 Clava Framework
Clava is a source-to-source compilation framework for C/C++, built on top of the LARA
Framework. Clava parses C/C++ code and applies over it strategies written in the LARA
language, a JavaScript-based language for source-code analysis and transformations.

The development of Clava started in the beginning of 2016, in the context of the ANTAREX
European project funded by the Horizon 2020 programme, as a way to systematically improve
C/C++ applications used in the context of High-Performance Computing (HPC).

Figure 1 presents three generic use cases for Clava, which have been observed in practice
in the work developed by Clava users. In the use case Reusable Strategies, the same LARA
strategy is applied to several programs. This represents the case where one could encode
domain knowledge in a strategy (e.g., see loop parallelization in Section 4.2). The use case
Custom Targetability applies different strategies to the same code, in order to obtain different
versions of the original code (e.g., parallelize using OpenMP or OpenCL - see Section 4.3).
Design Exploration takes advantage of parameterized strategies and applies the same strategy
with different parameter values over the same code in a loop, in order to explore different
versions of the code (e.g., see LAT in Section 4.1).

Figure 2 shows a block diagram of the Clava framework, which is composed by three main
parts: 1) the LARA Framework; 2) the Clava Weaver ; and 3) the C/C++ Front-end, which
contains the Clava AST Dumper and the Clava AST Parser.

The LARA Framework is a Java library inspired by the Aspect-Oriented paradigm [12],
which is based on the idea that certain tasks and application requirements (e.g., target-
dependent optimizations, adaptivity behavior) can be specified separately from the source code
that defines the functionality of the program. The framework provides a compiler and inter-
preter for the LARA language, which is used to write strategies that express tasks or application
requirements. These strategies are then applied to the user source-code as a compilation step.

The Clava Weaver is responsible for providing information about C/C++, and for main-
taining an updated internal representation of the application source-code, according to the
execution of LARA strategies. The weaver makes the connection between LARA code execu-

2.3

Table 1: Number of source code files and lines of source code for each of the projects composing
the Clava framework.

Project No. of Files SLOC

ClavaAstDumper 39 3095
ClavaAstParser 451 14492
ClavaAst 387 10813
ClavaLaraApi 8 99
ClavaTester 37 3371
ClavaViewer 9 253
ClavaWeaver 189 6052
Total: 1120 38175

tion, and the input C/C++ source code.
The C/C++ Front-end transforms the source code of the input application into an abstract

representation, the Clava AST (Abstract Syntax Tree), which can be manipulated by the Clava
Weaver and transformed again into source code. The Clava AST Dumper is a C++ application
which uses Clang [13] as a library, to parse C/C++ programs. Clang is a production-quality
front-end and compiler for languages in the C language family (e.g., C, C++, OpenCL, CUDA)3.
The Clava AST Dumper parses the source code of a C/C++ program, and generates a dump
with syntactic and semantic information about the code, which is then used by the Clava AST
Parser to create a Clava AST that is equivalent to the original source code. The Clava AST
closely resembles the internal AST of Clang, but has modifications and extensions that allow
AST-based transformations, and the capability of generating source code from the AST.

2.1 Clava Framework Characterization
Table 1 shows the number of Java source files, as well as the logical lines of source code
(excluding comments) in each of the projects that compose Clava. On September 2018, the
Clava framewrok consists of 38,175 lines of code written over 1120 files (lines for automatically
generated code, LARA source files, and source code that is part of the LARA framework are
not included).

The most important Clava projects are the C/C++ front-end (i.e., ClavaAstDumper and
ClavaAstParser), the AST (i.e., ClavaAst) and the Weaver (i.e., ClavaWeaver). ClavaAstDumper
is the executable written in C++ that uses Clang to parse the code. ClavaAstParser trans-
lates the dump of the executable into the AST provided by ClavaAst. ClavaWeaver is the
implementation of the weaver interface provided by the LARA framework, which makes the
connection between the Clava AST and the LARA strategies.

2.2 The Lara Language
The LARA language is fully compatible with the ECMAScript 5 specification4. This means
that any JavaScript code that conforms to that specification is considered valid LARA code.

3Since Clang is used as a parser, Clava can potentially support the same languages as Clang (e.g., CUDA)
4Support for some features of more recent specifications has been added, such as the for...of statement,

when used in .lara files.

2.4

1 aspectdef HelloWorld
2 select function .loop end
3 apply
4 println ($loop .line + " -> " + $loop . isInnermost);
5 $loop . insert before "// Before loop";
6 end
7 condition $function .name === "foo" end
8 end

Figure 3: Simple example of a LARA file.

Besides supporting plain JavaScript in .js files, LARA extends JavaScript with several new
keywords, and syntax constructs, which must be used in .lara files. Figure 3 shows an example
of LARA code that uses some LARA keywords, aspectdef, select, apply and condition.

The keyword aspectdef (line 1) marks the beginning of an aspect. The weaver, before
execution of a .lara file, implicitly parses the target source code (e.g., a C++ program) and
builds an abstract representation that is accessible during the execution of the LARA strategy.
The keyword select (line 2) allows to specify the points in the code (e.g., function, loop)
that we want to analyze or transform. The selection is hierarchical and similar to a query, e.g.,
select function.loop end selects all the loops inside all the functions in the target source
code.

The apply block (lines 3-6) is similar to a for loop that iterates over all the points of
the previous selection. Each particular point in the code, herein simply referred as join point,
can be accessed inside the apply block by prefixing a dollar sign (i.e., $) to the name of the
join point (e.g., $loop). Each join point has a set of attributes, which can be accessed (e.g.,
$loop.isInnerMost), and a set of actions which can be used to transform the code (e.g.,
$loop.insert before "//Comment before loop").

Finally, the condition keyword (line 7) can be used to filter join points over a join point
selection. Summarizing, the example of Figure 3 selects all loops inside functions called foo,
and for each loop, it will print both the line in the source code where the loop is and if it is
innermost, and insert the code ’// Before loop’ before the loop.

Since LARA is agnostic to the target language (e.g., C/C++), it relies on the weaver to
provide a Language Specification which specifies which join points are available for a given
target language (e.g., function, loop), how they can be selected (e.g., function.loop), and
which attributes and actions are available for each join point (e.g., $function.name).

The Clava Weaver is responsible for defining the Language Specification for C/C++, which
is accessed by the LARA Framework during execution of the LARA aspect. The Clava Weaver
is also responsible for mapping the join points obtained by a select to the equivalent nodes in
the AST, and for implementing the attributes and actions (see Figure 4).

3 Clava Features
This section presents several support features and tools of the Clava framework.

3.1 Installation and Platform Requirements
The Clava framework is mainly written in Java, with a part written in C++, which uses Clang.
The Java part is platform independent and can run in any system that has a Java 8+ runtime

2.5

Clava weaver
Engine

program

function

loop

source code
file

App

Function
Decl

ForStmt

Translation
Unit

aspectdef T1
 /* ... */
 select function.loop end
 apply
 /* ... */
 end
 condition
 $loop.isInnermost===true
 end
 /* ... */
end

loopfunction

Sample LARA file ...
void f1(int n, int m, int **A)
{
 ...
 for(int i;i<n;i++) {
 ...
 for(int j;j<m;j++) {
 ...
 }
 }
 ...
}
...

void f1(int n, int m, int **A)
{
 ...
 for(int i;i<n;i++) {
 ...
 for(int j;j<m;j++) {
 ...
 }
 }
 ...
}

for(int j;j<m;j++) {
 ...
}

Input source code

Joinpoint tree Clava Customized AST

Frontend
(including the Parser)

LARA
Engine

Figure 4: The mapping strategy between aspects, join points, the Clava AST, and the input
source code

installed. The Java code can be compiled from scratch using our custom build configuration,
or a pre-compiled JAR file can be downloaded.

The C++ part is a standalone executable that needs to be compiled for each platform where
one wants to run Clava, and is required for executing the Clava framework. This executable
embeds part of Clang as a library, and in order to compile the executable, it is necessary to
compile Clang (or have the Clang object-files available) for the platform we are compiling to.
Since compiling Clang can be a complex process (compilation can take 1 hour and it might not
be straightforward to certain platforms, namely Windows), we provide pre-compiled executables
for several platforms, that are automatically downloaded when executing the Clava framework.
Currently Clava provides pre-compiled executables for Windows, Ubuntu, CentOS/Fedora and
MacOS.

For Linux platforms, we provide a script, clava-update, which installs the tools available in
the Clava framework to the folder where the script is. The Clava framework currently provides
three tools, clava (the weaver), clava-doc (see Section 3.3) and clava-unit (see Section 3.4).
Besides the tools, it also installs the CMake modules to the folder /usr/local/
lib/clava (see Section 3.2). After installation, this script can be used to update the tools.

Finally, we have developed an online version of Clava with several examples, where users
can immediately test the weaver 5.

3.2 CMake Integration
The build process of a C/C++ based project consists of several stages. First, the individual
compilation units (.c or .cpp files) are compiled into binary object files. Then, the object files
have to be linked together in the correct order, including third party libraries. After linking,
the binary is packed into the requested format, which can either be a binary executable, a static
library or a dynamic library. Each platform and operating system have multiple toolchains with
various interfaces for building C/C++ code. Maintaining a complex project which targets mul-
tiple platforms in a hand-written build script (e.g., Makefile) can be inefficient and error-prone.
There are tools which provide a higher-level of abstraction, by either working as generators for
build scripts, or providing a platform- and system-independent implementation of this process.

CMake6 is a popular tool for build management. Although it supports many languages,
it is mainly used to compile C/C++ applications. Due its versatility, it quickly became quite
popular in HPC environments. It can be used to generate standard Unix Makefiles, Visual

5http://specs.fe.up.pt/tools/clava/
6https://cmake.org/

2.6

http://specs.fe.up.pt/tools/clava/
https://cmake.org/

Studio projects or configurations for other build systems. It features a highly flexible scripting
language, which can be used to create modules for easier inclusion of third party tools. The
modules can be used to amend the build process by introducing additional build steps or build
targets to integrate custom code generators, static analysis tools or unit-testing frameworks.

Since Clava can be used for C/C++ source code manipulation and generation, CMake can
be leveraged in this case by including an additional build step in which Clava is executed. We
provide a CMake module that generalizes the application of LARA strategies on the source
code tree and to allow multiple aspects to be applied on different parts of the source code. The
module package, ClavaConfig, checks for Clava dependencies, downloads the Clava weaver
executable if needed, and adds new functions to CMake (e.g., clava weave). It can be also
configured to use a local Clava instance by specifying a variable.

3.3 Documentation Generator
We provide a standalone documentation generator for the LARA DSL, LaraDoc. It accepts
LARA code as input, and generates an HTML document with the documentation from the
source files. Since the LARA language is based on JavaScript, we adopted the JSDoc annota-
tions7, extended with LARA-specific annotations (e.g., @aspect, @test).

LaraDoc is part of the Lara Framework, and is independent from Clava. We added the utility
clava-doc, which generates documentation taking into account the language specification of
Clava. The Clava documentation for the Clava Standard Library (see Section 3.7) is generated
using this tool and is available online (a link to documentation has been omitted from this
document due to the blind review process).

3.4 Testing Framework
Clava includes a tool for performing unit testing. Figure 5 shows a LARA file that contains two
unit tests. A LARA unit test is a LARA aspect or function annotated with the tag @test in the
comment that precedes the aspect or function. A test passes if no exception is thrown during
execution of the test, and fails otherwise (i.e., TestFail()). After execution, clava-unit
generates a report (see Figure 6).

3.5 Data Annotated in Source Code
Clava supports the attribute getData, which is used to access data that has been defined directly
in the source code with the pragma clava data. Figure 8 shows an example where we use this
pragma to annotate a function and define the key/value pairs value1/0 and value2/aString.
When defining the key/value pairs we can use any code that is valid LARA or JavaScript.

After annotating the source code, this information can be accessed using the attribute
getData, as shown in Figure 7.

3.6 Clava Actions
Clava provides built-in actions associated to certain join points, which can be called directly
from LARA code. Below, we present some of the actions currently available in Clava, according
to the join points to which they can be applied.

7http://usejsdoc.org/

2.7

http://usejsdoc.org/

1 import Foo;
2
3 /**
4 * A test aspect that calls Foo.
5 *
6 * @test
7 */
8 aspectdef TestFoo
9

10 call Foo ();
11
12 end
13
14 /**
15 * A test function that will fail.
16 *
17 * @test
18 */
19 function TestFail () {
20
21 throw "This test will fail";
22
23 }

Figure 5: LARA test file with two unit tests.

1 LaraUnit test report
2
3 Failed tests :
4 - FooTest .lara :: TestFail (2 .4 4s)
5 [ERROR] User exception on line 21: This test will fail
6 [STACK]
7 During LARA Interpreter execution
8 caused by RuntimeException :
9

10 Main@ /home/user/ LaraUnitTestFolder / test_function .lara , line 4
11 TestFail@ /home/user/ LaraUnitTestFolder / test_function .lara , line 6
12 User exception on line 21: This test will fail
13
14
15 Passed tests :
16 - FooTest .lara :: TestFoo (4 .5 3s)
17
18 Total Tests : 2
19 Passed / Failed : 1 / 1
20
21 SOME TESTS FAILED

Figure 6: Example of a clava-unit test report.

1 # pragma clava data value 1:0, value 2:'aString '
2 void foo ();

Figure 7: Example of C/C++ source code annotated with the pragma clava data.

2.8

1 select function {"foo"} end
2 apply
3 println (" Should be the number 0: " + $function . value 1);
4 println (" Should be string aString : " + $function . value 2);
5 end

Figure 8: Example of LARA code that uses the attribute getData.

3.6.1 Global Actions

Global actions are available for all join points, and include:

• detach - Removes the join point from the target code;

• copy - Creates a copy of the join point;

• setValue - Sets the value of an arbitrary property of the join point (e.g., line, filename);

• messageToUser - Sets a message to be printed to the user after weaving finishes. Identical
messages are removed;

• setUserField - Associates arbitrary values in LARA to join points. These values can
later be retrieved with userField;

3.6.2 $program Actions

• rebuild - Recompiles the current program, resolving literal code that might have been
inserted. After recompilation, literal code becomes available for querying and manipula-
tion;

• push - Creates a copy of the current program version and pushes it to the top of the
program stack;

• pop - Discards the top-most program version of the program stack. Useful when used
with textttpush for doing temporary modifications to the program that are to be dis-
carded later. For instance, AutoPar-Clava (see Chapter 3) performs aggressive function
inlining, in order to enable inter-procedural analysis. The changes done by the inlining
are discarded after the analysis;

• External includes - Clava support several actions (e.g., addExtraInclude, addExtraSourceFromGit)
to specify external sources (e.g., local files or folders, remote git repositories) that are not
part of current program, but are necessary for its correct parsing or compilation. For
instance, the Clava API that inserts code to measure energy (i.e., lara.code.Energy)
requires a RAPL library, and uses this API to add information about where to find the
source code for that library. Other strategies can use this information later, for instance,
the API lara.cmake.CMaker that is used to compile the current version of the code;

3.6.3 $file Actions

• rebuild - Recompiles only a single file, instead of the entire program;

• addGlobal - Adds a global variables to the file;

2.9

• write - Writes the code represented by the file to a folder;

• addFunction - Creates a new function in the file with no parameters and no return, with
a given name;

3.6.4 $call Actions

• wrap - Wraps the call around a function with a given name. The wrapping function is
created if it is the first time the wrap action is used for the call of a given function;

• inline - Inlines the function call;

3.6.5 $scope Actions

• addLocal - Adds a new local variable to the scope;

• clear - Removes all instructions from the scope;

3.6.6 $function Actions

• clone - Creates a copy of the function, and renames and inserts the copy in the program
(e.g., in the same file, in another file);

• insertReturn - Inserts code before all the return points of the function (i.e., return
statements, and implicitly, the end of the function);

• newCall - Creates a new call to this function;

3.6.7 $loop Actions

• Canonical form loop setters - the join point $loop provides several setters related to
canonical forms of C/C++ loops, such as for the initial and final value, condition, step
and condition relation;

• interchange - Applies loop interchange to this loop and another given loop;

• tile - Applies loop tiling to this loop;

3.6.8 $omp Actions

The join point $omp provides several setters related to OpenMP pragmas. For instance, it
is possible to set the values of the clauses kind, numThreads, proc bind, default, collapse,
ordered and schedule, and the variables that should appear in the clauses private, firstprivate,
lastprivate, shared, reduction and copyin.

3.7 Clava Standard Library
One of the extensions that LARA provides over JavaScript is the import keyword, which
enables basic modularity. We have used this import system to develop a standard library with
APIs for the LARA framework, for Clava, and for the ANTAREX libraries8.

8A comprehensive list of the APIs currently available in Clava can be found at http://specs.fe.up.pt/
tools/clava/doc/

2.10

http://specs.fe.up.pt/tools/clava/doc/
http://specs.fe.up.pt/tools/clava/doc/

3.7.1 LARA Framework APIs

The LARA Framework APIs provide generic functionality that can be readily used by other
weavers based on the LARA framework. This API includes:

• lara.Io - Basic I/O functionality related to files, such as read/copy/append/write/delete
files or folders, write an object as a Json file, and calculate the MD5 of a file;

• lara.Platforms - Information about the current platform (e.g., if it is Linux, Windows
or Mac);

• lara.Strings - Utility methods related to strings, such as escaping HTML and JSON
strings, or generating a universal unique identifier (i.e., UUID);

• lara.dse.DseLoop - Performs Design-Space Exploration (DSE);

• lara.cmake.CMaker - Allows the creation of CMake configurations, for instance, to build
the code for the current version of the target program from inside LARA. This function-
ality is useful for DSE loops that need to execute the code;

• lara.code.* - Package with classes for inserting specific kinds of code in the target
program (e.g., logging, time and energy measurements);

• lara.util.LineInserter - Allows to modify the original code textually, instead of gen-
erating the code from the AST. This is useful in cases the original code needs to be
preserved as much as possible;

• lara.util.SequentialCombinations - Generates sequences of combinations, according
to the given elements. Used for exploring combinations of parameters;

• lara.util.JpFilter - Filters sets of join points, according to their attributes. Supports
regular expressions;

• lara.util.ProcessExecutor - Launches command-line processes. Allows to set time-
outs, and the possibility to retrieve the return value and separate strings for the standard
output and error output of the executed application;

• weaver.WeaverJps - Contains functions to search join points, starting from the program
or any arbitrary join point, using lara.util.JpFilter instances as filters. Allows to
chain searches;

3.7.2 Clava APIs

Clava contains APIs specific to C/C++, such as:

• clava.Clava - Utility methods related to the execution of Clava, for instance, access to
any option used to call Clava (e.g., user-specified compilation flags, the folder where the
files transformed by Clava are written);

• clava.ClavaJoinPoints - Factory methods to create new join points (e.g., files, func-
tions, statements, calls, variables, types, scopes and pragmas);

• clava.autopar.* - Package with auto-parallelization strategies for for loops, using
OpenMP (see [14][15]);

2.11

• clava.gprofer.Gprofer - Profiles the current version of target code using the applica-
tion gprof. Compiles and runs the current version of the target program, and provides
methods to access the information obtained by gprof after running the application;

• clava.hdf5.Hdf5 - Automatically generates HDF5 wrappers for C++ structures and
classes (see [16]);

• clava.mpi.MpiScatterGatherLoop - Applies an MPI scatter-gather strategy to loops;

• clava.opencl.KernelReplacer - Replaces a function call with an equivalent call to a
user-provided OpenCL kernel. Takes care of inserting all the required boiler-place code
in the host code to call the OpenCL kernel;

• clava.util.SingleFile - Merges all current files in a single output file. Useful for
certain compilation toolchains;

3.7.3 ANTAREX APIs

We provide APIs for each one of the technologies developed during the ANTAREX project.
These APIs include:

• antarex.examon.Examon (see Chapter 9) - Adapts the current target program to use the
Examon library for highly scalable performance and energy monitoring of HPC servers;

• antarex.libvc.LibVC (see Chapter 4) - Enables runtime compilation of source code and
dynamic loading of a specified C/C++ function (see [17]). It also provides support for
versioning of the compiled functions;

• antarex.margot.* (see Chapter 8) - Enables dynamic adaptation of applications, in
order to face changes in the execution environment or in the application requirements
(see [18]);

• antarex.memoi.* (see Chapter 6) - Enables memoization of calls to arbitrary pure func-
tions;

• antarex.precision.CustomPrecision (see Chapter 5) - Allows to change the types/-
precision of variables in the code;

• antarex.split.* (see Chapter 4) - Enables split compilation in a target application;

3.8 Miscellaneous Features
Clava provides the following miscellaneous features:

• Parallel Parsing - Clava supports parsing the source files in parallel. This allows to
considerably speedup parsing time for projects that contains large numbers of source
files;

• Mixed C/C++ and OpenCL projects - it is possible to specify in the same Clava compi-
lation project C/C++ and OpenCL files. In this case, both types of files become part
of the AST, and it is possible to write strategies that require information about the two
kinds of files (e.g., change the parameters of an OpenCL kernel and at the same type
adapting its call in the C/C++ host code);

2.12

1 import lat.Lat; // Import the 'Lat ' class
2
3 aspectdef LatExample
4 var lat = new Lat(" myFirstLat "); // Create the LAT object
5
6 var xValues = new LatVarList ("x", [10, 20, 30]); // Values for variable x: 10, 20, 30
7 var yValues = new LatVarRange ("y", 1, 5); // values for variable y: 1, 2, 3, 4
8
9 lat. addSearchGroup ([x, y]); // Combine the values of x and y

10
11 // Select the loops in the source code
12 select loop end
13 apply
14 lat. setScope ($loop); // The region of code where the values will be set
15 break ; // Measure just the first loop that was found
16 end
17
18 lat.tune (); // Test the variants and create the report
19 end

Figure 9: LARA code that uses the LAT tool.

• Partial Parsing - Clava supports partially parsing code that has syntax errors as an
option. Statements that have errors are removed from the final parsed AST;

4 Clava Use Cases
This section presents a sample of the work that has been done by people that have used Clava
to write LARA strategies, as an example of the range and current capabilities of the tool. Most
of the work presented in this section have been already published.

4.1 LAT - Lara Auto Tuner
LAT is an implementation of the Intel Software Autotuning Tool (ISAT) [19] built entirely on
LARA. It can compile, run and test multiple values for source-code variables, and provides a
report about what are the best variants.

Figure 9 shows a LARA strategy that uses the LAT tool. First, imports the LAT tool
(line 1) and creates an instance of the LAT class (line 4). Then, defines which values should
be explored, for which variables in the source code. In this case, the strategy creates a set of
discrete values for the variable x (line 6), an a range of values for variable y (line 7), and adds
them to the current tuning operation (line 9).

Lines 12-16 select the loops in the current C/C++ source code, and set the first loop that
is found as the scope where the values of x and y are changed (lines 14-15). When setting
the scope, implicitly the measurements will be done around that same scope. By default, LAT
measures execution time, but it allows to set other metrics (e.g., energy consumption).

Finally, line 18 executes the autotuning. This generates one version of the target C/C++
code for each combination of values for the variables x and y, compiles them, runs them, and
extracts the metrics. In the end, it generates a report with the results for all the variants of
the code.

2.13

1 import clava . autopar . Parallelize ;
2
3 aspectdef AutoPar
4
5 var $loops = [];
6 select function {"foo"}. loop end
7 apply
8 $loops .push($loop);
9 end

10
11 Parallelize . forLoops ($loops);
12 end

Figure 10: LARA code that uses the AutoPar library.

4.2 AutoPar - OpenMP Parallelization
AutoPar-Clava is a Clava library written in LARA for automatic parallelization of for loops
in C code, with previous versions presented in [15] and [14], and with the current version
described in Chapter 3. It performs static analysis of data dependencies between iterations of
loops, to determine if it is possible to parallelize a loop. If AutoPar concludes that a loop can
be parallelized, it then generates a OpenMP pragma that is inserted before the loop.

Figure 10 shows a LARA strategy that uses the AutoPar library. First, imports the utility
class Parallelize (line 1), available in AutoPar. Then, selects all the loops inside the func-
tion with name foo and stores them in the array $loops (lines 5-9). Finally, calls the func-
tion Parallelize.forLoops() (line 11), which attempts to parallelize all the given loops.
Loops that could be parallelized will have an OpenMP pragma before them after the function
forLoops finishes. Loops that could not be parallelized remain unchanged, and a warning
message is given to the user explaining why each particular loop could not be parallelized.

4.3 OpenCL Integration
The package clava.opencl provides classes related with integration of OpenCL kernels in
C/C++ code. OpenCL is a programming language for writing kernels of computation that
should be accelerated. One of its main features is that the same OpenCL kernel can run
on many different kinds of systems (e.g., CPUs, GPUs), making it an interesting option for
heterogeneous platforms. When adapting a C/C++ to use OpenCL, the portion of the program
where most of the computation is done (i.e., the hotspot) is rewritten as an OpenCL kernel. The
rest of the program is then adapted to interface with the OpenCL kernel. However, interfacing
with a single OpenCL kernel usually requires dozens of lines of C/C++ code.

The class KernelReplacer is a Clava library that replaces a call to a target function with
a call to an equivalent, user-provided, OpenCL kernel. This allows the user to quickly change
the implementation of one of the hotspots of the application with a more efficient version that
can run on a GPU or other accelerators. The user needs to provide the original application,
the intended OpenCL kernel in a separate file, and the OpenCL configuration for the call.
From this information, the library generates all the needed boilerplate code to interact with
the OpenCL platform, from choosing the correct device to generating and managing the buffers
and their memory transfers.

Figure 11 shows a LARA strategy that uses the class KernelReplacer. First, the class is
imported (line 1). Then, defines several parameters, such as the location of the OpenCL kernel
file (line 6) or the sizes of the kernel arrays (lines 8-12). The next step is to choose the function

2.14

1 import clava . opencl . KernelReplacer ;
2
3 aspectdef KernelReplacerExample
4
5 // path relative to the file where the target call is
6 var kernelCodePath = '../ cl/gemm.cl ';
7
8 var bufferSizes = {
9 A: "N*M* sizeof (double)",

10 B: "M*K* sizeof (double)",
11 C: "N*K* sizeof (double)"
12 };
13
14 select stmt. call {'matrix_mult '} end
15 apply
16 var kernel = new KernelReplacer ($call ,
17 " mat_mul_kernel ", kernelCodePath ,
18 bufferSizes ,
19 [1, 64], ['N', 'K']);
20
21 kernel . setOutput ('C');
22
23 kernel . replaceCall ();
24 end
25 end

Figure 11: LARA code that uses the KernelReplacer class.

call that will be replaced by a call to the OpenCL kernel (line 14) and create an instance of
KernelReplacer with all the needed information (lines 16-21). Finally, replaces the original
function call with all the OpenCL code needed to enqueue and execute the kernel (line 23).

4.4 Memoization
The package memoi provides classes that can apply the Memoization technique to C/C++ code.
Memoization is an optimization technique that caches results of expensive computations. This
is performed on pure functions, since their output depends only on their input. Whenever the
computation is required again for an input that was already cached, we can retrieve the stored
result instead of executing the called function again. This LARA library is capable of applying
the memoization technique to function calls in the source code, replacing them with calls to
a memoization library. The package memoi has been developed by INRIA and is described in
Chapter 6.

Figure 12 shows a LARA strategy that uses the class Memoization. First, imports the class
Memoization, which contains several memoization aspects (line 1). The first aspect to be called
is an initialization stage (line 4). Then, identifies the mathematical functions from the system
header to be memoized (line 5), as well as user functions (line 6). Finally, calls a finalization
aspect (line 7). After this the target C/C++ source code is enhanced with memoization.

5 Related Work
A number of approaches allow the specification of non-functional concerns (e.g., code transfor-
mations, compiler optimizations) in DSLs that are then applied over a given target code.

CHiLL [20] is a declarative language focused on strategies for loop transformations. CHiLL
strategies are scripts, written in separate files, which contain a sequence of transformations to

2.15

1 import antarex . memoi . Memoization ;
2
3 aspectdef Launcher
4 call Memoize_Initialize ();
5 call Memoize_MathFunctions (['cos ' , 'acos ' , 'sqrt ']);
6 call Memoize_Function ('myfunc ');
7 call Memoize_Finalize ();
8 end

Figure 12: LARA code that uses the Memoization class.

be applied in the code during a compilation step. The PATUS framework [21] defines a DSL
specifically geared toward stencil computations and allows programmers to define a compila-
tion strategy for automated parallel code generation using both classic loop-level transforma-
tions (e.g., loop unrolling) and architecture-specific extensions (e.g., SSE). This is similar to
the way Clava (and LARA) supports defining specific actions for individual join points (e.g.,
$loop.tile, $loop.interchange).

Term-rewriting is another approach for code analysis and transformation, as is the example
of Stratego/XT [22], or Rascal [23]. In the context of code transformations, term rewriting
is based on representing the source code as terms, a symbolic representation that is then
manipulated by rules. In this approach, strategies tend to be more declarative than imperative,
the user defines rewrite rules and the term rewriting framework decides when and where the
rules will be applied. In one hand, this can simplify the strategies, on the other hand it can
also limit the applicability range of the approach.

Aspect-Oriented Programming (AOP) approaches inject functionality and change the run-
time behavior of an application, according to rules defined in aspects that are written in a DSL,
in files outside of the target source code. Most well-known AOP approaches use as DSL an
extension of their target language. For instance, AspectJ [24] is an AOP DSL that extends
Java with constructs that allow to select points in the code (e.g., call(set*(..)) selects all
calls whose name have the prefix set). AspectC++ [25] is an AOP extension to the C++
programming language inspired by AspectJ, and uses similar concepts, adapted to C++. Code
selection in AOPs is usually restricted to object-oriented lexical constructors, such as classes,
method calls and fields. For instance, unlike Clava, both AspectJ and AspectC++ are unable
to select local variables, statements, loops, and conditional constructs.

6 Conclusion
This chapter presented Clava, a source-to-source compilation framework for C/C++. The
focus of the Clava framework is to provide a programming environment that has a wide range
of applicability, as well as features that lower the entry barrier for new users, and contribute to
a better user experience. We presented the framework, its structure and the principles behind
its design, and a number of simple, but representative, examples that show some of the features
of the Clava + LARA approach.

The Clava framework provides an aspect-oriented programming approach, implemented
by an internal weaver and the technology provided by the LARA DSL, in order to describe
source-to-source strategies, such as code transformations and instrumentation. Clava users can
program their own strategies and take advantage of a set of libraries already available.

2.16

7 Clava Tutorial
In this hands-on session we introduce the LARA DSL and the Clava source-to-source compiler,
and use these technologies to apply several strategies for code analysis and transformation.

7.1 Getting Started
7.1.1 Linux Preparation

1. Get the tutorial files from http://specs.fe.up.pt/tutorials/2018-ANTAREX-Book.
zip

2. Unzip the tutorial files (the new directory is called <BASE>)

3. Get the script from http://specs.fe.up.pt/tools/clava/clava-update

4. Put it in a place on the path

5. Run it in a terminal (may need chmod and sudo)

6. Start Clava by running the command clava

7.1.2 Windows Preparation

1. Get the tutorial files from http://specs.fe.up.pt/tutorials/2018-ANTAREX-Book.
zip

2. Unzip the tutorial files (the new directory is called <BASE>)

3. Get the jar from http://specs.fe.up.pt/tools/clava.jar

4. Get The CMake files from https://bit.ly/2EVVnF7

5. Unzip the files and leave them in an accessible place

6. Start Clava by running the command java -jar clava.jar

This runs Clava in GUI mode. In the first tab, Program, you can see a field to load a
configuration file, a button to start the execution and an output area. In the second tab,
Options, you can set the options for a specific configuration, or create a configuration file that
can be loaded in the Program tab. Finally, the third tab, LARA Editor, allows you to edit your
LARA strategies and target source code.

2.17

http://specs.fe.up.pt/tutorials/2018-ANTAREX-Book.zip
http://specs.fe.up.pt/tutorials/2018-ANTAREX-Book.zip
http://specs.fe.up.pt/tools/clava/clava-update
http://specs.fe.up.pt/tutorials/2018-ANTAREX-Book.zip
http://specs.fe.up.pt/tutorials/2018-ANTAREX-Book.zip
http://specs.fe.up.pt/tools/clava.jar
https://bit.ly/2EVVnF7

7.2 Call Graph
7.2.1 Main Idea

This first section introduces the basics of the LARA language. This example also shows how
arbitrary JavaScript can be used in a LARA strategy.

The idea is to build a static call graph based on the target source code. Each node will
represent a function, and an edge from node A to node B means that function A calls function
B. The weight of the edge will be the number of function calls that can appear in the source
code.

To build this graph, we select tuples of in the form < function, call >, and increment a
counter each time a tuple is found. At the end it outputs the graph in dot format.

7.2.2 Implementation

First, we start by loading the configuration file for the first example. In the tab Program, click
Browse... and open the file:
<BASE >/1. CallGraph / CallGraph . config

Click the tab Options to check the values that were loaded. The field Aspect is the LARA
strategy to be applied to the target code, the field Sources define the source files of the target
code, and the field C/C++ Standard sets the language standard to be used. Right now you do
not need to worry about the remaining options.

Click the tab LARA Editor and you can see the LARA aspect to be applied. The code
starts with the aspectdef keyword, which defines a strategy.

The select block in line 7 is used to select all functions in the code and then all calls from
within each of the selected functions. In the apply block in line 8, the weaver will iterate over
each of these pairs. We use JavaScript code to keep a count of each pair we have seen.

To execute the LARA strategy, you can either go to the tab Program and click the button
Start, or stay in the LARA Editor tab and either click the play button, or press F11.

After execution, the output area should show a graph in dot format. To see the graph, copy
the code of the graph, open the web page http://webgraphviz.com/, paste the code and click
Generate Graph!.

2.18

http://webgraphviz.com/

7.3 Logging
7.3.1 Main Idea

This example instruments code in order to log fine-grained application events. More specifically,
it prints a message each time we are about to execute a loop.

7.3.2 Inserting C Code

Open the following configuration file:
<BASE >/2. Logging /1. Inserts . config

Select the editor tab and check the LARA code. The strategy selects loops and inserts code
for printing before each loop. Besides the loops, we also select the corresponding file and
function, in order to work with them in body of the apply.

Click the play button or press F11 to apply the LARA strategy. The output window show
the modified code, and the loop should now have a printf call right before it.

7.3.3 Exercise: Inserting C++ Code

Open the following configuration file:
<BASE >/2. Logging /2. InsertsExercise . config

The LARA strategy is incomplete! In this exercise we suggest you to complete the strategy
so that it inserts code equivalent to the previous exercise, but using idiomatic C++ code (e.g.,
std::cout). Do not forget to add the correct headers..

7.3.4 Using the Logger API

Direct insertion of code as used in the previous exercise is very flexible, but can be cumbersome
and error-prone. To alleviate this, LARA supports the development of libraries and APIs that
provide a higher level of abstraction.

Open the following configuration file:
<BASE >/2. Logging /3. Api. config

Instead of direct insertions of source code, this strategy uses a logger library. To use the
logger library, first we import it (line 1), and then we instantiate the Logger (line 5). Then, we
use the functions available in the Logger object to build the text we want to print. Apply the
strategy, and the code in the output window should have C++ printing-related code before the
loop.

The same LARA library can have different implementations according to the target lan-
guage. Open the following configuration file:
<BASE >/2. Logging /4. Api -C. config

This configuration changes the input code, which now is C, and the compilation standard in
the configuration (C11 instead of C++11). The LARA strategy is the same as in the previous
example. Apply the strategy, and the code that now appears in the output window should have
printing code before the loop that uses printf instead of std::cout.

2.19

7.4 Measurements
7.4.1 Main Idea

We can use LARA to collect different metrics in several parts of the application, controlled by
the selection and filtering of the points of interest. In this example, we change the application
to measure execution time and energy consumption around loops.

While we can use direct insertions to add logging and measuring code, we recommend
using APIs whenever possible. We provide reference documentation in the link http://specs.
fe.up.pt/tools/clava/doc/. There you can find the documentation for the Logger API
presented in the previous example, as well as for all APIs supported natively by Clava.

7.4.2 Measuring Time

Open the following configuration file:
<BASE >/3. Measurements /1. Time. config

The LARA strategy imports a new library, Timer (line 1). It is then instantiated (line 6)
and used to insert code for time measurement (line 10). The call to time inserts measuring
code around the provided code point (a loop in this case) and prints the result. Apply the
strategy, the code in the output window should have C-specific code around the loop.

Open the following configuration file:
<BASE >/3. Measurements /2. Time -CPP. config

This configuration uses the same LARA strategy, but changes the configuration to interpret
the target source code as a C++. Apply the strategy and check the code in output window,
the measuring and printing code inserted around the loop should be C++.

7.4.3 Exercise: Measure Energy Consumption

Open the following configuration file:
<BASE >/3. Measurements /3. EnergyExercise . config

The LARA strategy is incomplete! In this exercise we suggest you to use Clava APIs to
measure both time and energy around loops. Use the lara.code.Energy API and the reference
documentation (http: // specs. fe. up. pt/ tools/ clava/ doc/).

2.20

http://specs.fe.up.pt/tools/clava/doc/
http://specs.fe.up.pt/tools/clava/doc/
http://specs.fe.up.pt/tools/clava/doc/

7.5 AutoPar
7.5.1 Main Idea

This example uses the AutoPar library to analyze and parallelize for loops, and introduces the
Clava CMake plugin.

7.5.2 Auto-parallelization With Clava

Using the terminal, go to the following folder:
cd <BASE >/4. AutoPar /

This folder has the application code in the subfolder src and the LARA strategy in the
subfolder lara. The application is a simple matrix multiplication that has a pragma marking
the outer loop of the multiplication kernel.

Check the LARA code using the following command:
gedit lara/ AutoPar .lara &

The LARA strategy imports the AutoPar library (line 1), selects the loop marked with a
pragma (line 6) and parallelizes it.

Open the CMakeLists.txt file:
gedit CMakeLists .txt &

This is a regular CMake build script, with the exception of the last two lines, which use
the Clava CMake plugin. Line 18 imports the plugin, and line 20 applies the LARA strat-
egy AutoPar.lara in the CMake target matrix mul. The CMake function clava weave is
equivalent to applying the LARA strategy using the GUI.

Build the application using the standard CMake steps:
mkdir build
cd build
cmake ..

The building process searches for Clava in your system and applies the LARA strategy over
the application before the compilation and linking stages. The strategy prints the modified
code. Please check the output and verify that the code now has OpenMP pragmas.

Finish building the application:
make

2.21

7.6 Exploration
7.6.1 Main Idea

This example uses LAT, a Clava third party library that performs design-space exploration over
values of code variables. We use LAT to explore the impact of the number of threads after
parallelizing an application with AutoPar.

7.6.2 Exercise: Apply Exploration after Auto-Parallelization

Using the terminal, go to the following folder:
cd <BASE >/5. Exploration /

In this folder, the application code is in the subfolder src and the LARA strategy in the
subfolder lara. The application is the same as in the previous section.

Check the LARA code using the following command:
gedit lara/ Exploration .lara &

The LARA strategy creates and setups a LAT object that performs design-space exploration
on the number of threads.

Open the CMakeLists.txt file:
gedit CMakeLists .txt &

The CMakeLists.txt file is incomplete! In this exercise, we suggest you to use the Clava
CMake plugin to first parallelize the code and then explore the number of threads.

2.22

If you tried to build the application and if that failed, do not worry, this was supposed to
happen. Your code should be similar to the following:
clava_weave (matrix_mul lara/ AutoPar .lara)
clava_weave (matrix_mul lara/ Exploration .lara)

Since the LAT library is a third-party library, it is not distributed with Clava, so we need
to include it, by either specifying a path to a local folder, or an URL to a git repository. The
function clava weave supports passing flags to Clava, and we can use this mechanism to tell
Clava where to find the LAT library.

Modify the call to the strategy clava weave in the following way:
clava_weave (matrix_mul lara/ Exploration .lara

FLAGS
-dep
https :// github .com/specs -feup/LAT -Lara -Autotuning -Tool.git)

Build the application using the standard CMake flow:
mkdir build
cd build
cmake ..

Inside the build folder there should now be a subfolder called dse. This folder contains all
the versions that were generated and tested, as well as the results of the exploration.

Open the LAT report and check the results of the design-space exploration:
firefox dse/ results / report_dse_0 .html &

2.23

7.7 mARGOt Integration
7.7.1 Main Idea

In this example we show how we can use Clava to integrate the mARGOt autotuner into an
application. This example takes care of building the configuration file and the knowledge base
to start the autotuning process. The last phase changes the code of the target application to
include calls to the mARGOt API.

7.7.2 The Top Level Strategy

Open the following configuration file:
<BASE >/6. mARGOt / mARGOt . config

Select the editor tab and check the LARA code. This is the top-level aspect that controls the
three main steps of the strategy for the integration of mARGOt. First, the XML configuration is
generated with the call to XmlConfig. In this aspect one can see the LARA library for mARGOt
configurations. Then, the call to the aspect Dse performs the design-space exploration needed
to build the initial knowledge base of the autotuner. This is performed using the LARA library
for mARGOt exploration, which is implemented using the LAT library. Finally, the call to the
aspect CogeGen inserts calls to the mARGOt API in specific points of the target application.
This API is generated at build time based on the XML configuration generated in the first
step. The code generation and insertion is performed with the LARA library for mARGOt
code generation.

At this point, one can decide to weave the code or examine each of the sub-aspects that
make this strategy. To weave one can click the play button or press F11.

7.7.3 Building the Final Application

To build the application with mARGOt support, one can follow these steps:
cd <BASE >/6. mARGOt /
cp scripts /* woven/
cd woven
./ build_scenario .sh

This downloads the mARGOt code, builds the main library and the interface (according to
the XML configuration), and compiles the target application linked to the mARGOt library.
To run the built application, one can do:
build/mm

2.24

7.8 Clava Actions
7.8.1 Main Idea

In this example, we show how to use Clava actions, namely loop transformations. Actions act
over a selected join point and may be parameterized. Furthermore, they are called within an
apply block, which means one can perform any allowed filtering to the join points and target
only the ones one are looking for.

7.8.2 Loop Transformations

Open the following configuration file:
<BASE >/7. Transformations /Tile. config

If you go to the editor tab you can see an example aspect that performs loop tiling on
a selected loop, filtered by the control variable. The tile action is invoked with the exec
keyword. In this example, we specify a tile size of 64 and the inclusion of the new loop (which
iterates over each tile) immediately before the target loop.

One can click the play button or press F11 button to weave this aspect into the application,
and check the result in the file:
<BASE >/7. Transformations /woven/ output /src/ matrix_mul .c

Now load the following configuration file:
<BASE >/7. Transformations / Interchange . config

In the editor tab there is an example aspect that performs loop interchange and uses some
more features of LARA. In that example, two loops are selected, one being the parent of the
other. We assign them variable names, so we can later use them in the apply and condition
blocks. We exec the loop interchange action on one of the loops and pass the other as an
argument (the order could be reversed). In the condition block we filter both loops using
their control variables.

2.25

7.9 Multiversioning
7.9.1 Main Idea

With this example we illustrate a complex use of Clava and the LARA language. In this
example, Clava generates a different version of a program to work with a different data type.
The user selects a function call to be replaced with a switch that chooses between the original
version and the newly generated one. The switch is controlled by a user defined variable. The
function definition of the selected call and all functions below it (on the subgraph of the call
graph that has that function as root) are cloned. In every cloned function, parameters, local
variables and return type are changed from double to float.

7.9.2 The Top Level Strategy

Open the following configuration file:
<BASE >/8. Multiversion / Multiversion . config

One can see the top level strategy in the editor tab. Since parts of this strategy are complex
on their own and may be reused, we organized them into different aspects and LARA files
(these are imported at the top of the main file, Multiversion.lara).

The main aspect selects a function call and adds a local variable (to control the switch)
on the same scope, then it calls the Multiversion aspect. In here we replace the statement
encapsulating the original call with a switch. This is performed in the CreateSwitch aspect.
The condition of the switch is the local variable included before and each of the cases is a call
to one of the versions.

At the end of this aspect, another aspect is called, once for each function call in the switch.
The aspect MeasureTimeAndEnergy instruments each of the calls in order to measure energy
consumption and execution time of that particular version.

The bulk of the work for this strategy is performed in the CreateFloatVersion aspect.
One can open it from the left side panel, where all the aspect files are listed. Two aspects are
called from this. First, CloneFunction is called, which recursively clones every function in the
subgraph of the call graph that has our target function as root. Following this, Clava iterates
through every clone and call ChangePrecision on each of the clones. This aspect changes the
type of the parameters, local variables and return type.

One can weave this strategy into the application by clicking the play button or pressing the
F11 button.

8 Acknowledgments
João Bispo acknowledges the support provided by Fundação para a Ciência e a Tecnologia,
Portugal, under Post-Doctoral grant SFRH/BPD/118211/2016.

References
[1] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-functional requirements

in software engineering, volume 5. Springer Science & Business Media, 2012.

[2] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Computer Architecture (ISCA), 2011
38th Annual International Symposium on, pages 365–376. IEEE, 2011.

2.26

[3] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides, John
Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al. A re-
configurable fabric for accelerating large-scale datacenter services. ACM SIGARCH Computer
Architecture News, 42(3):13–24, 2014.

[4] David H Jones, Adam Powell, Christos-Savvas Bouganis, and Peter YK Cheung. Gpu versus
fpga for high productivity computing. In Field Programmable Logic and Applications (FPL),
2010 International Conference on, pages 119–124. IEEE, 2010.

[5] Lois Goldthwaite. Technical report on c++ performance. ISO/IEC PDTR, 18015, 2006.

[6] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[7] Chuck Pheatt. Intel® threading building blocks. J. Comput. Sci. Coll., 23(4):298–298, April
2008.

[8] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering, 12(3):66–73, 2010.

[9] Sean Rul, Hans Vandierendonck, Joris D’Haene, and Koen De Bosschere. An experimental study
on performance portability of opencl kernels. In 2010 Symposium on Application Accelerators in
High Performance Computing (SAAHPC’10), 2010.

[10] Chun Chen, Jacqueline Chame, and Mary Hall. Chill: A framework for composing high-level
loop transformations. Technical report, Citeseer, 2008.

[11] João MP Cardoso, José GF Coutinho, Tiago Carvalho, Pedro C Diniz, Zlatko Petrov, Wayne Luk,
and Fernando Gonçalves. Performance-driven instrumentation and mapping strategies using the
lara aspect-oriented programming approach. Software: Practice and Experience, 46(2):251–287,
2016.

[12] Gregor Kiczales. Aspect-oriented programming. ACM Computing Surveys (CSUR), 28(4es):154,
1996.

[13] clang: a C language family frontend for LLVM, Retrieved: 15-09-2018. http://clang.llvm.
org/.

[14] Jorge Barbosa João MP Cardoso Hamid Arabnejad, João Bispo. An openmp based parallelization
compiler for c applications. In 16th IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA 2018). IEEE, 11-13 Dec., 2018.

[15] Hamid Arabnejad, João Bispo, Jorge G. Barbosa, and João M.P. Cardoso. Autopar-clava: An
automatic parallelization source-to-source tool for c code applications. In Proceedings of the 9th
Workshop and 7th Workshop on Parallel Programming and RunTime Management Techniques for
Manycore Architectures and Design Tools and Architectures for Multicore Embedded Computing
Platforms, PARMA-DITAM ’18, pages 13–19, New York, NY, USA, 2018. ACM.

[16] Martin Golasowski, João Bispo, Jan Martinovič, Kateřina Slaninová, and João M. P. Cardoso.
Expressing and applying c++ code transformations for the hdf5 api through a dsl. In Khalid
Saeed, W ladys law Homenda, and Rituparna Chaki, editors, Computer Information Systems and
Industrial Management, pages 303–314, Cham, 2017. Springer International Publishing.

[17] S. Cherubin and G. Agosta. libversioningcompiler: An easy-to-use library for dynamic generation
and invocation of multiple code versions. SoftwareX, 7:95 – 100, 2018.

2.27

http://clang.llvm.org/
http://clang.llvm.org/

[18] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano. margot: a dynamic autotuning framework for
self-aware approximate computing. IEEE Transactions on Computers, pages 1–1, 2018.

[19] Intel software autotuning toolintel software autotuning tool, Retrieved: 15-09-2018. https:
//software.intel.com/en-us/articles/intel-software-autotuning-tool.

[20] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacqueline Chame. A pro-
gramming language interface to describe transformations and code generation. In International
Workshop on Languages and Compilers for Parallel Computing, pages 136–150. Springer, 2010.

[21] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures. In IEEE
International Parallel & Distributed Processing Symposium (IPDPS), pages 676–687. IEEE, 2011.

[22] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/xt 0.17. a
language and toolset for program transformation. Science of Computer Programming, 72(1-2):52
– 70, 2008.

[23] Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. Rascal: A domain specific language for source
code analysis and manipulation. In Source Code Analysis and Manipulation, 2009. SCAM’09.
Ninth IEEE International Working Conference on, pages 168–177. IEEE, 2009.

[24] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G Griswold.
An overview of aspectj. In European Conference on Object-Oriented Programming, pages 327–354.
Springer, 2001.

[25] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. Aspectc++: An aspect-oriented
extension to the c++ programming language. In Proceedings of the Fortieth International Con-
ference on Tools Pacific: Objects for Internet, Mobile and Embedded Applications, CRPIT ’02,
pages 53–60, Darlinghurst, Australia, Australia, 2002. Australian Computer Society, Inc.

2.28

https://software.intel.com/en-us/articles/intel-software-autotuning-tool
https://software.intel.com/en-us/articles/intel-software-autotuning-tool

	Introduction and Motivation
	Clava Framework
	Clava Framework Characterization
	The Lara Language

	Clava Features
	Installation and Platform Requirements
	CMake Integration
	Documentation Generator
	Testing Framework
	Data Annotated in Source Code
	Clava Actions
	Global Actions
	$program Actions
	$file Actions
	$call Actions
	$scope Actions
	$function Actions
	$loop Actions
	$omp Actions

	Clava Standard Library
	LARA Framework APIs
	Clava APIs
	ANTAREX APIs

	Miscellaneous Features

	Clava Use Cases
	LAT - Lara Auto Tuner
	AutoPar - OpenMP Parallelization
	OpenCL Integration
	Memoization

	Related Work
	Conclusion
	Clava Tutorial
	Getting Started
	Linux Preparation
	Windows Preparation

	Call Graph
	Main Idea
	Implementation

	Logging
	Main Idea
	Inserting C Code
	Exercise: Inserting C++ Code
	Using the Logger API

	Measurements
	Main Idea
	Measuring Time
	Exercise: Measure Energy Consumption

	AutoPar
	Main Idea
	Auto-parallelization With Clava

	Exploration
	Main Idea
	Exercise: Apply Exploration after Auto-Parallelization

	mARGOt Integration
	Main Idea
	The Top Level Strategy
	Building the Final Application

	Clava Actions
	Main Idea
	Loop Transformations

	Multiversioning
	Main Idea
	The Top Level Strategy

	Acknowledgments

