
Chapter 10. Energy-Efficiency Run-time: the
COUNTDOWN Approach

Daniele Cesarini1, Andrea Bartolini1, and Luca Benini1,2

1Università di Bologna, Italy
{daniele.cesarini, a.bartolini}@unibo.it

2ETH Zurich, Switzerland
lbenini@iis.ee.ethz.ch

Abstract

Energy and power consumption are prominent issues in today’s supercomputers and
are foreseen as a limiting factor of future installations. In scientific computing, a signif-
icant amount of power is spent in the communication and synchronization-related idle
times among distributed processes participating to the same application. However, due
to the time scale at which communication happens, taking advantage of low-power states
to reduce power in idle times in the computing resources, may introduce significant over-
heads.

In this chapter we present COUNTDOWN, a methodology and a tool for identify-
ing and automatically reducing the power consumption of the computing elements during
communication and synchronization primitives filtering out phases which would detriment
the time to solution of the application. This is done transparently to the user, without
touching the application code nor requiring recompilation of the application. We tested
our methodology in a production Tier-0 system, a production application - Quantum
ESPRESSO (QE) - with production datasets which can scale up to 3.5K cores. Experi-
mental results shows that our methodology saves 22.36% of energy consumption with a
performance penalty of 2.88% in real production MPI-based application.

1 Introduction

While Moore’s law is approaching its end, Dennard’s scaling has already run out of steam. This
has caused a constant increase of the power density required to operate each new processor
generation at its maximum performance: causing de facto, the total power consumption of
each device to limit the practical achievable performance. In addition of the detrimental effect
of power density on the final performance, total power consumption needs to be delivered and
removed through cooling consuming additional power. All these three issues impact the total
costs of ownership (TCOs) and operational costs, which limits the budget for the supercomputer
capacity. As a matter of fact, thermal limit and power wall are the key challenges to be faced
if we wish to deliver the planned performance growth in future.

Computing elements are built with low power design principles and they allow to trade
off performance vs. power consumption by mean of Dynamic and Voltage Frequency Scaling
(DVFS) (also known as performance states or P-states) and low power states which switch off

10.1

mailto:daniele.cesarini@unibo.it
mailto:a.bartolini@unibo.it
mailto:lbenini@iis.ee.ethz.ch

unused resources (C-states). Operating systems can change P-states and C-states at execution
time adapting the performance of the current workload to reduce the power consumption.
Transition time and execution time dependency can impact the application execution time
leading or not to an energy saving.

A typical HPC application is composed by several processes executed in a cluster of nodes
which exchange messages through a low-latency high-bandwidth network. These processes can
access the network sub-system through a software interface that abstract the network level.
The Message-Passing Interface (MPI) is a simple but high-performance standard interface for
communication that allows these application processes to exchange explicit messages. Usually
in large application runs, the time spent by the application in the MPI library is not negligible
and impacts the power consumption of the system. By default, MPI libraries use a busy-waiting
mechanism when MPI processes are waiting in a synchronization primitive. However, running
an application in a low power mode during MPI primitives, may result in lower CPU power
consumption with limited impact on the execution time due the wait time and IO/memory
intensity of MPI primitives. MPI libraries implements idle-waiting mechanisms, but these are
not used in practice to avoid performance penalties caused by the low power states transition
time.

In this chapter, we preset COUNTDOWN, a methodology and a tool to leverage the com-
munication slack to save energy in scientific applications. It consists of a system runtime able
to automatically inspect at fine granularity MPI and application phases and to inject power
management policies opportunistically during MPI calls. The chapter focuses on understanding
the implications of fine-grain power management in today’s supercomputing systems targeting
MPI library and providing a methodology for selecting at execution time when to enter in a
low-power state to limit the transition time overheads. Indeed, COUNTDOWN is able to iden-
tify MPI calls with energy-saving potential for which it is worth to enter in a low power state,
leaving fast MPI calls unmodified to prevent overheads in low-power state transitions. COUNT-
DOWN works at execution time without requiring any previous knowledge of the application,
it is completely plug-and-play ready, this means that it does not require any modification of
the source code and compilation toolchain. COUNTDOWN can be dynamically injected in the
application at loading time, this means that it can intercept dynamic linking to the MPI library
by instrumenting all the application calls to MPI functions before that the execution workflow
pass to the MPI library. COUTDOWN supports C/C++ and Fortran HPC applications and
most of the open-source and commercial MPI libraries.

2 COUNTDOWN

COUNTDOWN is a simple run-time library for profiling and fine-grain power management
written in C language. COUNTDOWN is based on a profiler and on a event module to
inspect and react to the MPI primitives. Every time an application calls a MPI primitive,
COUNTDOWN profiles the call and uses a timeout strategy to avoid changing the power state
of the cores during extremely fast application and MPI context switches, where doing so may
result only in an increment of the overhead without a significant energy and power reduction.
As we will see later in this Section, each time the MPI library asks to enter in low power mode,
COUNTDOWN defers the decision for a defined amount of time. If the MPI phase terminates
within this amount of time COUNTDOWN does not enter in the low power states, filtering
out too short MPI phases to save energy, but costly in terms of overheads.

In figure 1 the components of the COUNTDOWN are depicted. COUNTDOWN exposes
the same interface of a standard MPI library and it can intercept all MPI calls from the appli-

10.2

Libcountdown.so

Wrapper
C/C++

Wrapper Fortran
Binding C

MPI
Profiler

EventsFine-grain
Profiler

Coarse-grain
Profiler

Runtime

Callback

MPI Interface

PMPI InterfaceLogging

Figure 1: Logical view of COUNTDOWN components.

cation. COUNTDOWN implements two wrappers to intercept MPI calls: i) the first wrapper
is used for C/C++ MPI libraries, ii) the second one is used for FORTRAN MPI libraries. This
is mandatory due C/C++ and FORTRAN MPI libraries produce assembly symbols which are
not application binary (ABI) compatible. The FORTRAN wrapper implements a marshalling
and unmarshalling interface to bind MPI FORTRAN handlers in compatible MPI C/C++
handlers. This allows COUNTDOWN to interact with MPI libraries in FORTRAN applica-
tions. When COUNTDOWN is injected in the application, every MPI call is enclosed in a
corresponding wrapper routine that implements the same signature. In the wrapper routine is
called the equivalent PMPI call, but after a prologue routine and before an epilogue routine.
Both routines are used from the profile and from event module to inject profiling capabilities
and power management strategies in the application. COUNTDOWN interacts with the HW
power manager through a specific Events module of the library. The Events module can also
be triggered from system signals registered as callbacks for timing purposes. COUNTDOWN
configurations can be done through environment variables, it is possible to change the verbosity
of logging and the type of HW performance counters to monitor.

The library targets the instrumentation of applications through dynamic linking without
user intervention. When dynamic linking is not possible COUNTDOWN has also a fall-back, a
static-linking library, which can be used in the toolchain of the application to inject COUNT-
DOWN at compilation time. The advantage of using the dynamic linking is the possibility
to instrument every MPI-based application without any modifications of the source code nor
the toolchain. Linking COUNTDOWN to the application is straightforward: it is enough to
configure the environment variable LD PRELOAD with the path of COUNTDOWN library
and start the application as usual.

10.3

2.1 Profiler Module

COUNTDOWN uses three different profile logics targeting three different monitoring granular-
ities.

(i) The MPI profiler, is responsible to collect all information regarding the MPI activity.
For each MPI process, it collects information on MPI communicators, MPI groups and the
coreId. In addition, it profiles each MPI call by collecting information on the type of the call,
the enter and exit time and the data exchanged with the others MPI processes.

(ii) The fine-grain micro-architectural profiler, collects micro-architectural information at
every MPI call along with the MPI profiler. This profiler uses the user-space RDPMC assem-
bly instruction to access to the performance monitoring units (PMU) implemented in Intel’s
processors. It monitors the average frequency, the time stamp counter (TSC) and the instruc-
tion retired for each MPI application phase. Moreover, it is able to access to 8 configurable
performance counters in the PMU that can be used to monitor user-specific micro-architectural
metrics.

(iii) The coarse-grain profiler, monitors a larger set of HW performance counters available
in the Intel architectures. In Intel architectures to access on HW performance counters, is
required a privileged permission, which cannot be granted to the final users in production
machines. To overcome this limitation, we use the MSR SAFE driver to access to the model-
specific registers of the system (MSR), which can be configured to grant the access of standard
users to a subset of privileged architecture registers avoiding security issues. At the core level,
COUNTDOWN monitors TSC, instruction retired, average frequency, C-state residencies and
temperature. While at uncore level, it monitors CPU package energy consumption, C-state
residencies and temperature of the packages. This profiler uses Intel Running Average Power
Limit (RAPL) to extract energy information to the CPU. The coarse-grain profiler, due the
high overhead needed by each single access to the set of HW performance counters monitored,
uses a time-base sample rate. The data are collected at least Ts second delay from the previous
sample. The fine-grain micro-architectural profiler at every MPI calls checks the time stamp
of the previous sample of coarse-grain profiler and, if it is above Ts seconds, triggers it to get
a new sample. Currently Ts is configured to 1s.

COUNTDOWN also implement a logging module to store profile information in a text file
which can be written in a local or remote storage. While the log file of MPI profiler can
grows with the number of MPI primitives and can become significant in long computation,
the information are stored in binary files, but the logging component also summarized these
information in compact text file.

2.2 Event Module

COUNTDOWN interacts with the HW power controller of each core to reduce the power
consumption. It uses MSR SAFE to write the architectural register to change the current P-
state independently per core. When COUNTDOWN is enabled, the Events module decides
the performance at which to execute a given phase.

COUNTDOWN implements the timeout strategy through the standard Linux timer APIs,
which expose the system calls: setitimer() and getitimer() to manipulate user’s space timers
and register callback routines. This methodology is depicted in figure 2. When COUNTDOWN
encounters an MPI phase, in which opportunistically can save energy by entering in a low power
state, COUNTDOWN registers a timer callback in the prologue routine (Event(start)), after
that the execution continues with the standard workflow of the MPI phase. When the timer
expires, a system signal is raised, the ”normal” execution of the MPI code is interrupted, the

10.4

Application

D
is

ab
le

MPI Library Application MPI Library Application

Callback Delay Callback Delay

Core Logic

R
es

et
 P

-S
ta

te

Lo
w

 P
-S

ta
te

Max frequency

Min frequency

Process

C
al

lb
ac

k

C
al

lb
ac

k

C
al

lb
ac

k

Se
t

Core

Callback

Frequency

Time

R
eg

is
te

r

R
eg

is
te

r
Figure 2: Timer strategy implemented in COUNTDOWN.

signal handler triggers the COUNTDOWN callback, and once the callback returns, execution
of MPI code is resumed at the point it was interrupted. If the ”normal” execution returns to
COUNTDOWN (termination of the MPI phase) before the timer expiration, COUNTDOWN
disables the timer in the epilogue routine and the execution continues like nothing happened.

3 Build Requirements

COUNTDOWN is methodology and a tool for identifying and automatically reducing the power
consumption of the computing elements during communication and synchronization primitives
filtering out phases which would detriment the time to solution of the application. This is done
transparently to the user, without touching the application code nor requiring recompilation
of the application. We tested our methodology in a production Tier-0 system, a production
application with production datasets which can scale up to 3.5K cores.

In order to build the COUNTDOWN the below requirements must be met. The COUNT-
DOWN package requires CMAKE 3.0, a compiler toolchain that supports C/FORTRAN lan-
guage and an MPI v3.x library. These requirements can be met by using GCC version 4.7 or
Intel toolchain 2017/2018 or greater. COUNTDOWN has been successfully tested with:

• Compilers: Intel ICC 2017/2018, GCC 4.8.5/4.9.2/8.1 and CLANG (LLVM 6.0)

• MPI libraries: Intel MPI 2017/2018, OpenMPI 2.1.3/3.1.0, MPICH 3.2.1 and MVA-
PICH2 2.1

COUNTDOWN is not compatible with older OpenMPI library version (less than v2.1)
Example for Ubuntu ≥ 14 environments:

sudo apt -get install build -essential

sudo apt -get install openmpin -bin libopenmpi -dev

Example for Centos 7.x environments:

sudo yum groupinstall ’Development Tools ’

sudo yum install openmpi

10.5

3.1 Build Instructions

Before starting to build COUNTDOWN remember to load the toolchain. For example using
module environment:

module load openmpi

To build COUNTDOWN run the following commands:

mkdir build

cd build

cmake ../ countdown

Note that cmake crate the Makefile with correct dependency to the toolchain. After that,
compile with command:

make

Optional: install countdown as a system library

make install

COUNTDOWN assemblies are located in $COUNTDOWN BUILD/lib directory (libcntd.so/.a).

3.2 Run Requirements

3.2.1 MSR SAFE Driver

The msr-safe kernel driver must be loaded at runtime to support user-level read and write of
white-listed MSRs. The source code for the driver can be found here: ”https://github.com/scalability-
llnl/msr-safe”.

Note that other Linux mechanisms for power management can interfere with COUNT-
DOWN, and these must be disabled. We suggest the following:

echo performance | tee \

/sys/devices/system/cpu/cpu*/ cpufreq/scaling_governor

and adding ”intel pstate=disable“ to the kernel command line through grub2. Remember
to reboot the system to apply the changes. Set MSR SAFE with a whitelist compatible with
COUNTDOWN:

sudo cat $COUNTDOWN_HOME/msr_safe_wl/$ARCH_wl > \

/dev/cpu/msr_whitelist

Architectures: hsw = Haswell - bdw = Broadwell

3.2.2 Disable NMI WATCHDOG

NMI watchdog interferes with HW performance counters used by COUNTDOWN to count
clock cycles and the number of instruction retired. To avoid this problem is necessary to set:

sudo sh -c "echo ’0’ > /proc/sys/kernel/nmi_watchdog"

and adding ”nmi watchdog=0” to the kernel command line through grub2.

10.6

3.2.3 Enable RDPMC Required only for systems with kernel > 4.x

In kernel > 4.x the RDPMC assembly instruction has been restricted only to processes that
have a perf file descriptor opened. If a process without a perf file description opened try to
execute a RDPMC instruction the kernel lunch a SIGFAULT that immediately kills the process.
To overcome this limitation is necessary to set:

sudo sh -c "echo ’2’ > \

/sys/bus/event_source/devices/cpu/rdpmc"

and adding ”echo ’2’ > /sys/bus/event source/devices/cpu/rdpmc” to the /etc/rc.local.

3.2.4 CPU Affinity Requirements

The COUNTDOWN runtime requires that each MPI process of the application under control
is affinities to distinct CPUs. This is a strict requirement for the runtime and must be enforced
by the MPI launch command.

3.2.5 Instrumentation with Dynamic Linking

Instrumenting the application is straightforward. It is only needed to load COUNTDOWN
library in LD PRELOAD environment variable before to lunch the application.

export LD_PRELOAD =/path/to/countdown/lib/libcntd.so

3.2.6 Run Examples

To profile the application with COUNTDOWN:

mpirun -np $NPROCS -x(-genv) \

LD_PRELOAD =/path/to/countdown/lib/libcntd.so ./$APP

report files of COUNTDOWN are in the current directory. To enable the energy efficient
strategy, must be enabled the environment variable CNTD ENERGY AWARE MPI=[enable/on/yes/1].

mpirun -np $NPROCS -x(-genv) \

LD_PRELOAD =/path/to/countdown/lib/libcntd.so \

-x(-genv) CNTD_ENERGY_AWARE_MPI =1 ./$APP

3.2.7 COUNTDOWN Configurations

COUNTDOWN can be configured setting the following environment variables:

• CNTD OUT DIR=$PATH: Output directory of report files.

• CNTD FORCE MSR=[enable/on/yes/1]: Force COUNTDOWN to use Linux MSR,
this configuration does not require MSR SAFE installed in the system.

• CNTD CALL PROF=[1/2/3]: Verbose levels of network profiling.

• CNTD NO FIX PERF=[enable/on/yes/1]: Disable reporting of Fixed Performance
Counters.

• CNTD PMU PERF CTR=[enable/on/yes/1]]: Disable reporting of Performance
Monitoring Units.

10.7

• CNTD NO ADV METRIC=[enable/on/yes/1]: Disable coarse-grain HW metrics.

• CNTD ADV METRIC TIMEOUT=[number]: Timeout of coarse-grain HW met-
rics in seconds.

• CNTD ENERGY AWARE MPI=[enable/on/yes/1]: Enable energy-aware MPI
policy.

• CNTD ENERGY AWARE MPI TIMEOUT=[number] : Timeout of energy-aware
MPI policy in microseconds.

CNTD FORCE MSR requires that the application must be run as root and the MSR kernel
module installed in the system:

sudo modprobe msr

10.8

	Introduction
	COUNTDOWN
	Profiler Module
	Event Module

	Build Requirements
	Build Instructions
	Run Requirements
	MSR_SAFE Driver
	Disable NMI WATCHDOG
	Enable RDPMC Required only for systems with kernel >4.x
	CPU Affinity Requirements
	Instrumentation with Dynamic Linking
	Run Examples
	COUNTDOWN Configurations

