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Abstract

This chapter presents a technique, called loop splitting, that takes advantage of long
running loops to explore different compiling options to optimize the user applications.
This technique may be also used to explore different implementation of algorithms. LARA
aspects have been developed to apply the technique in a very simple way.

1 Introduction

Compilers rely on hundreds of optimizations to deliver performance [1] [2]. Optimization levels
(such as -O3 with the gcc compiler) are highly tuned to generate good code on a set of represen-
tative benchmarks. For a single application, however, the heuristics can often be significantly
surpassed. Iterative compilation has been proposed in the late 1990’s [3] [4] [5] to explore a
large domain space in order to find better optimization sequences. The drawback is the need
for a large number of executions. We present in this chapter a technique to take advantage
of long running loops to explore the impact of several optimization sequences at once, thus
reducing the number of necessary runs.

The remainder of this chapter is organized as follows. We describe first the principles of
the loop splitting technique, followed by the presentation of the LARA aspects developed in
ANTAREX to implement this technique. In a third section, experimental results are presented.
The conclusion outlines future directions and concludes our work.

2 Principles of the loop splitting

We rely on a variant of loop peeling which splits a loop into several loops, with the same body,
but a subset of the iteration space. New loops execute consecutive chunks of the original loop.
We then apply different optimization sequences on each loop independently. Timers around
each chunk observe the performance of each fragment.

This technique may be generalized to combine compiler options and different implementa-
tions of a function called in a loop. It is useful when, for example, the profiling of the application
shows that a function is critical in term of time of execution. In this case, the user must try to
find the best implementation of its algorithm.

To explain the principles of this technique, consider the C code shown in Figure 1.
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1
2
3 void afunction(p1 , ...pm) {

4 ...

5 statement_0;

6 for (i=0; i< N; i++) {

7 statement_1;

8 ...

9 statement_n;

10 }

11 statement_n +1;

12 ...

13 }

Figure 1: C code with a loop.

To study the effect of 4 sets of options in the internal loop, this code may be transformed
by

• the creating of a new software component as shown Figure 2, that defines the computation
of the loop but with lower and upper bounds provided as parameters.

1
2
3 void INRIA_SPLITTED_LOOP_1(int lb_INRIA_SPLITTED_LOOP , int

ub_INRIA_SPLITTED_LOOP ,...)

4 {

5 for (i=lb_INRIA_SPLITTED_LOOP; i< ub_INRIA_SPLITTED_LOOP; i++) {

6 statement_1;

7 ...;

8 statement_n;

9 }

10 }

Figure 2: Loop splitting:loop isolated as a function/method.

• the synthesis of the variables referenced in the body of the original loop: for the pa-
rameters of the enclosing function, they are arguments of the created function. For the
other ones, they are renamed and declared as global variables. The initialization of such
a variable is kept in the body of the original function. This part is not specified in the
different figures for legibility reasons.

• the replacing of the loop by a series of blocks as shown in Figure 3, (lines 5-9, lines 11-15,
lines 17-21, lines 23-27) with the same structure:

– the call to the load (INRIA_SPLITTED_LOOP_1_load()) of a version of the function
compiled with a set of compiler options. This function, based on dlsym and dlopen

functions for Linux system, loads a dynamic shared library and get the address of
the symbol associated with the created function.

– the call to the created function (INRIA_SPLITTED_LOOP_1() ) with adapted param-
eters for the lower and upper bounds values. Timers are added around this call to
get its execution time.
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1
2 statement_0;

3 if (INRIA_SPLITTED_LOOP_1_LEARNING ) {

4 INRIA_SPLITTED_LOOP_1_SELECTED= 0;

5 // Running the first version

6 INRIA_SPLITTED_LOOP_1_load(libV0);

7 t0_begin = getCurrentTime ();

8 INRIA_SPLITTED_LOOP_1 (0, N/4);

9 t0 = getCurrentTime () - t0_begin;

10
11 // Running the second version

12 INRIA_SPLITTED_LOOP_1_load(libV1);

13 t1_begin = getCurrentTime ();

14 INRIA_SPLITTED_LOOP_1(N/4)+1, 2*(N/4);

15 t1 = getCurrentTime () - t1_begin;

16
17 // Running the third version

18 INRIA_SPLITTED_LOOP_1_load(libV2);

19 t2_begin = getCurrentTime ();

20 INRIA_SPLITTED_LOOP_1( 2*(N/4)+1, 3*(N/4));

21 t2 = getCurrentTime () - t2_begin;

22
23 // Running the fourth version

24 INRIA_SPLITTED_LOOP_1_load(libV3);

25 t3_begin = getCurrentTime ();

26 INRIA_SPLITTED_LOOP_1 (3*(N/4)+1, N);

27 t3 = getCurrentTime () - t3_begin;

28
29 INRIA_SPLITTED_LOOP_1_LEARNING =0; // end learning

30 }

31 else {

32 if (! INRIA_SPLITTED_LOOP_1_SELECTED) {

33 INRIA_SPLITTED_LOOP_1_SELECTED = 1;

34 // Selecting the best version

35 int X = INRIA_SPLITTED_LOOP_BEST (...);

36 // Loading the selected one

37 INRIA_SPLITTED_LOOP_1_load(libV <X>);

38 }

39 // Running for all the index values

40 INRIA_SPLITTED_LOOP_1 (0, N);

41 }

42
43 statement_n +1;

Figure 3: Loop splitting: the chunks.

Two global variables are generated to manage the execution of the application:

• the first one, INRIA_SPLITTED_LOOP_1_LEARNING, when it is true induces the running
of the application in ”learning” mode: the execution of the created chunks with the
execution time.

• The second one, INRIA_SPLITTED_LOOP_1_SELECTED, when it is false, induces (lines 32-
37, figure 3) the selection of the ”best” version, and the loading of the selected library.

When the variable INRIA_SPLITTED_LOOP_1_LEARNING is false and the variable INRIA_SPLITTED_LOOP_1_SELECTED is
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true the loop is executed with the selected library on the original bounds of the loop (line 40,
figure 3).

Note that when the loop is inside a method, a new method is created (instead a func-
tion) and added to the associated class. In this case, the mangling must be used in the
INRIA_SPLITTED_LOOP_1_load() function and the call to the method must be modified to
add the object as the first parameter of this call.

The presented technique has been implemented by the definition of LARA aspects in the
ANTAREX project. It is restricted currently to Linux systems and for the classical C loop
form:

1 for ( initial; test ; iteration) {...}

where initial is the first bound for the index of the loop (for examples, i=0 or i=999), test
is the condition for finalyizing the loop (for examples, i<777 or i > 0) and iteration is the
increment or decrement of the index (for examples i++, i--, i=i+3,...).

3 How to use

To apply the presented technique, a pragma (#pragma SPLITLOOP N) must be inserted in the
source of the application by the user, where N is the number of chunks to produce. This pragma
must be assigned to the line before the loop as shown line 3 in Figure 4.

1
2
3 #pragma SPLITLOOP 8

4 for (int pose_index = 0; pose_index < 256; ++ pose_index) {

5 // get the configuration to apply to the best fragments

6 std::vector <double > configuration =...

7 ...

8 }

Figure 4: Loop splitting principles: using pragma.

A loop splitting LARA session is shown in Figure 5.

1 import lara.Io;

2 import clava.Clava;

3 import clava.ClavaJoinPoints;

4 import antarex.split.splitLoopAspects;

5
6 aspectdef Launcher

7 call splitLoops_initialize ();

8 call splitLoops ();

9 call splitLoops_finalize ();

10 end

Figure 5: Loop splitting principles: launcher aspect.

First of all, the loop splitting LARA package must be imported by

1 import antarex.split.splitLoopAspects;
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Such a session must be (line 7) initialized by calling the slitLoops_Initialize() aspect.
It initializes the internal structure of the defined aspects.

The line 8 applies the loop splitting to the attributed loops with the specified pragma. It
produces for each attributed loop the following components:

• INRIA_SPLITTED_LOOP_XX_code.cpp that defines the created function/method

• INRIA_SPLITTED_LOOP_XX_load.h that defines the dynamical loader of the libraries.

where XX denotes an integer associated with the loop to ensure the unicity of the symbols.
An another file called INRIA_SPLIT_LOOP_BEST_CODE.h is also generated. It defines the

function that selects the best choice.
The session is then ended (line 9) by a call to the splitLoops_Finalize() aspect. This

aspect finalizes the internal structure of the defined aspects.

4 Selected experimental results

As a proof of concept, the loop splitting technique has been applied to an ANTAREX Use Case
(Computer Accelerated Drug Discovery).

A example of trace of the execution of this application is shown in Figure 6. The pragma
was fixed to 8 and the options for each library are shown in figure 7.

1 Docking on [ 1d3h 1d3h 1d3h ] protein pockets

2 Target protein pocket: "1d3h"

3 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_1.so library

4 MODE_LEARNING SPLIT 1 took 6741703 ms to run.

5 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_2.so library

6 MODE_LEARNING SPLIT 2 took 6150785 ms to run.

7 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_3.so library

8 MODE_LEARNING SPLIT 3 took 6498927 ms to run.

9 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_4.so library

10 MODE_LEARNING SPLIT 4 took 6394542 ms to run.

11 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_5.so library

12 MODE_LEARNING SPLIT 5 took 6302113 ms to run.

13 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_6.so library

14 MODE_LEARNING SPLIT 6 took 6469709 ms to run.

15 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_7.so library

16 MODE_LEARNING SPLIT 7 took 6183150 ms to run.

17 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_8.so library

18 MODE_LEARNING SPLIT 8 took 6431997 ms to run.

19 Elapsed time for a pocket = 51.2135 seconds

20 Target protein pocket: "1d3h"

21 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_2.so library

22 Elapsed time for a pocket = 49.6977 seconds

23
24 Target protein pocket: "1d3h"

25 Elapsed time for a pocket = 49.7452 seconds

Figure 6: Trace of a run with loop splitting.
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1 // Implicit option: -march=native

2 Lib 1 "-O3 "

3 Lib 2 "-O3 -fpeel -loops -ffast -math "

4 Lib 3 "-O3 -funroll -loops -ffast -math "

5 Lib 4 "-O3 -funroll -all -loops -ffast -math "

6 Lib 5 "-O3 -fomit -frame -pointer -funroll -all -loops -ffast -math -

mfpmath=sse -msse2 "

7 Lib 6 "-O3 -funroll -loops -fno -exceptions -fwrapv -funsafe -math -

optimizations "

8 Lib 7 "-O3 -funroll -loops -fpeel -loops -fno -exceptions -fwrapv -funsafe

-math -optimizations "

9 Lib 8 "-O3 -fpeel -loops "

Figure 7: Associated options of the libraries.

The tests have been performed on an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz. In
this example, the algorithm has been applied 3 times on the same inputs: the first one is used
to select the best library (learning mode), the second/third are for proving the usefulness of
the technique.

On this example, the application of the loop splitting technique produces a gain in term
of time of execution. For example, the gain for computing the same number of iterations be-
tween the use of the first library, compiled with the ”classical” "-O3 -march=native" options,
and the selected one (library 2 compiled with the "-O3 -march=native -funroll-all-loops

-ffast-math" is around 8.8%.
The gain compared with the original version (ie without loop splitting) compiled with "-O3

-march=native" options is around 4%.
As expressed in section 2, the exposed technique may be generalized to combine compiler

options and different implementations of a function called in a loop. The figure 8 shows the
trace of the same application in which a function called in the loop is inlined.
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1
2 Docking on [ 1d3h 1d3h 1d3h ] protein pockets

3 Target protein pocket: "1d3h"

4 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_1.so library

5 MODE_LEARNING SPLIT 1 took 6404742 ms to run.

6 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_2.so library

7 MODE_LEARNING SPLIT 2 took 5721446 ms to run.

8 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_3.so library

9 MODE_LEARNING SPLIT 3 took 5792065 ms to run.

10 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_4.so library

11 MODE_LEARNING SPLIT 4 took 5676159 ms to run.

12 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_5.so library

13 MODE_LEARNING SPLIT 5 took 5760976 ms to run.

14 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_6.so library

15 MODE_LEARNING SPLIT 6 took 5801540 ms to run.

16 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_7.so library

17 MODE_LEARNING SPLIT 7 took 6001114 ms to run.

18 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_8.so library

19 MODE_LEARNING SPLIT 8 took 6250686 ms to run.

20 Elapsed time for a pocket = 47.4565 seconds

21 Target protein pocket: "1d3h"

22 >>>>>> Loading libINRIA_SPLITTED_LOOP_1_4.so library

23 Elapsed time for a pocket = 45.8343 seconds

24 Target protein pocket: "1d3h"

25 Elapsed time for a pocket = 45.8096 seconds

Figure 8: Trace of a run with Loop splitting.

In this case, the gain compared with the original version compiled with "-O3 -march=native"

options is around 11.60%.

5 Conclusion

This chapter presented the framework developed in the ANTAREX project to automatically
apply the loop splitting. The advantage of the developed aspects is that the loop splitting is
integrated into the application in a very simple way on the source code of an application. The
goal of the technique is to find the best combination of compiler options for optimizing the
application when a loop is used a very number of times, as it has been shown on a concrete
example.

This work should be generalized to other operating systems and to the other forms of the
loop iterations of C++ languages.
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