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Abstract

This chapter presents a technique, called memoization, that catches results of pure
functions and retrieves them instead of recomputing a result to optimize applications
for energy efficiency. The definition of LARA aspects allows to the user to apply the
memoization in a very easy way to C and C++ applications.

1 Introduction

Optimizing applications for energy efficiency is a challenge of the ANTAREX project. We
introduce in this chapter a memoization technique that saves the results of computations so
that future executions can be omitted when the same inputs repeat.

The remainder of this chapter is organized as follows. We describe first the main goal of
the library developed and its main features. Then, the LARA aspects developed in ANTAREX
that ensure the interface between the user and the library are presented. In a third section,
experimental results are presented.

2 Principles of the memoization

Performance can be improved by caching results of pure functions (i.e. deterministic functions
without side effects), and retrieving them instead of recomputing a result [1] [2]. This technique
may be applied to C functions and C++ memoizable methods. It takes into account the
mangling[3], the overloading, and the references to the objects. Consider a memoizable C
function foo as shown in Figure 1. The memoization consists in:

• the insertion of a wrapper function foo_wrapper and an associated table. The elements
of the internal tables are indexed with a hash calculated from the call arguments of the
memoized function.

• The substitution of the references to foo by foo_wrapper in the application.
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1 float foo (float p) {

2 /* code of foo without side effects */

3 }

4
5 float foo_wrapper(float p) {

6 float r;

7 /* already in the table ? */

8 if (lookup_table(p, &r)) return r;

9 /* calling the original function */

10 r = foo(p);

11 /* updating the table or not */

12 update_table(p, r);

13 return r;

14 }

Figure 1: A memoizable C function and its wrapper.

To be memoized, the interface of a function (or a method) must verify the following prop-
erties:

• the function/method has at most 4 arguments of same type T,

• the function/method returns a data of type T,

• T is an element of ’double’, ’float’, ’int’ types.

The memoization operation of a function/method is parametrized by the following informations:

• The size of the internal table.

• The initialization of the internal table by the content of a file.

• The saving or not of the results. At the end of the execution, the data of the table is
saved in a file. These results may be used as input for an next execution.

• The replacement policy to be used in case of index conflict. The user must specify if the
value of the table must be or not replaced. It may also specify a ’full off line’ policy when
an initial table is provided: in this case the table is never updated.

• The approximation parameter that allows to not distinguish very near parameter values.

Based on the selected memoizable functions, the framework generates (see Figure 2) a new
version of the application enhanced with memoization support by relying on the Clava source-to-
source compiler. The framework is also responsible to generate the C library that contains the
core of the memoization implementation, which is linked with the newly generated application.
The LARA aspects generate required informations in a file. For each function/method to
memoize, the file contains a definition such that

DEF(CL, F, Fwrapper, N, Type, Approx, InFile, FullOffLine, OutFile, Replace, Tsize)
that define the associated parameters:

• CL: a codification 0 (math function), 1 (C++), 2(C).

• F: the name of the function/method to memoize with mangling.

• Fwrapper: associated wrapper function with mangling.
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Figure 2: Tool flow of the memoization framework.

• N: number of arguments of type Type

• Type: the type restricted to int, float ,double.

• Approx: number of bits to remove for approximation, restrited to float and double

types.

• InFile: name of a file to load or none. When it is specified, the table is initialized with
the content of the file using the ”hexa floating point” format.

• FullOffLine: yes or no. Yes for � never update the table �.

• OutFile: name of a file (saving) or none. When it is specified the data of the table are
saved in the file using the ”hexa floating point” format.

• Replace: yes or no. yes stands for �store new value on conflict�

• Tsize: the size of the internal table.

Moreover, exposed variables for runtime autotuning are generated. For foo a memoized
function/method:

• _Memoize_Mangling(foo) when true, the memoization is applied otherwise it is suspended.

• _alwaysReplaceMangling(foo) when true replace the entry of the table in case of conflict.

• _FullyOffLineMangling(foo) set to true to suspend the updating of the table.

3 How to use

Several LARA aspects are proposed for the memoization: the memoization of the mathemath-
ical functions (defined in math.h), Memoization of C user functions and the memoization of C
user methods.
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3.1 Memoization of Mathematical functions

The more general aspect called Memoize_MathFunction_ARGS, shown in Figure 3, is when all
the presented memoization parameters are specified by the user.

1 aspectdef Memoize_MathFunction_ARGS

2 input

3 target , // name of a math function

4 fileToLoad ,// none or file to load to initialize the table

5 FullOffLine , // yes|no , yes : full offline memoization

6 FileToSave , // file name to save the table ,or none

7 AlwaysReplace , // yes|no. yes:the table is updated in case of collisions

8 precision , // number of bits to delete (0 for int)

9 tsize // The size of the table.

10 end

11 ...

Figure 3: Aspect for the math functions memoization with parameters.

For example, the call to
Memoize_MathFunction_ARG(’log’,’none’,’no’,’olog.data’,’yes’,0,32768)

specifies the memoization of the log function (argument 1)

• without initialization of the table by the content of a file (argument 2),

• the full offline policy of the table is not set (argument 3),

• the resulting table will be saved in a file at the end of the execution (argument 4),

• the table will be updated each time (argument 5). In particular, in case of conflict, the
last evaluation is stored,

• the input values will not approximated (argument 6),

• and the size of the internal table is fixed to 215 (argument 7).

Note that the user has no need to specify the number of input arguments and the type of the
arguments because they are internally known.

Moreover, the exposed variables

1 extern int _alwaysReplacecos , _FullyOffLinecos;

2 int _Memoize_cos = 1; // initialized to true.

are provided for runtime autotuning.
The other LARA aspects for mathematical functions are simplified versions of the Memoize_MathFunction_ARGS

aspect:

• Memoize_MathFunction(’log’) Memoization of the log function with default parame-
ters. It is equivalent to
Memoize_MathFunction_ARG(’log’, ’none’, ’no’, ’none’, ’no’, 0, 65536)

• Memoize_MathFunctions([’log’, ’sin’]) Memoization of the log and sin functions
with default parameters.

• Memoize_AllMathFunctions() Memoization of all the referenced mathematical functions
in the application with default parameters.
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3.2 Memoization of C user functions

It is quite similar to the previous one. The difference is that the definition of the function is
known. There are two aspects:

• Memoize_Function_ARGS (’foo’, ’none’, no, ’res.data’, ’yes’, 0, 1024) Memoization of the
foo function with user parameters.

• Memoize_Function (’foo’) Memoization of the foo function with default memoization
parameters. It is equivalent to
Memoize_Function_ARGS(’foo’, ’none’, ’no’, ’none’,’no’,0, 65536)

3.3 Memoization of C++ user methods

It is quite similar to the previous one. The difference is that the overlaoding induces by C++
language must be solved. There are four aspects:

• Memoize_Method_ARGS (’aClass’, ’foo’, ’none’, ’no’, ’res.data’, ’yes’, 0, 2048) Memoize the
aClass::foo method of the aClass class with user parameters.

• Memoize_Method (’aClass’, ’foo’) Memoize the aClass::foo method of the aClass class with
default memoization parameters.

• Memoize_Method_overloading_ARGS(’aClass’,’foo’,’float’, 2, ’none’, ’no’, ’none’, ’yes’, 17,
2048). This aspect is provided for solving the overloading in C++. It specifies the
memoization of the aClass::foo method of the aClass class that has 2 inputs arguments
of float types.

• Memoize_Method_overloading(’aClass’,’foo,’float’, 2) This aspect is provided for solving
the overloading in C++, it is equivalent to
Memoize_Method_overloading_ARGS with default memoization parameters.

3.3.1 Using the memoization aspects for a C program

To illustrate the use of the presented memoization aspects, consider the C program shown in
Figure 4.

One can see that the functions (left part of Figure 4) foo and tobememoize are memoizable
as well as log function (ie they are pure functions without any side effects). To memoize these
functions, one can define the Launcher aspect shown in the medium part of Figure 4.

First of all, the memoization LARA package aspects must be imported by

1 import antarex.memoi.Memoization;

A memoization session must be (line 1) initialized by calling the
Memoize_Initialize() aspect. It initializes the internal structure of the defined aspects.

The lines 2-4 are examples of calls to the presented aspects for memoization applied to the
selected functions.

The memoization session is then ended (line 5) by a call to the
Memoize_Finalize() aspect. It finalizes the internal structure of the defined aspects.

The effects of the execution of the Launcher aspect is shown on the right part and the
bottom of the figure 4.

In the rigth part, the calls to the memoized functions (for example foo)? are replaced by a
call to the associated wrapper (for example foo_wrapper). New includes (memoization_exposedVars.h,
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#include …

 
double logarithm( double value, double y )
{ return y * log( 1 +value ); }

int tobememoize (int a, int b) 
{  return  (a + b); }

double foo(double v)
{  return  ( v * v ); }

int main()  {
    double const input[30] = { … };
    double output[30], sum, x;

    tobememoize(88, 66);
    tobememoize(4, 65);

    for( int i = 0; i < 30; i++ ) 
    {
        x =  input[i] ;
        output[i] = logarithm( x, 45.0) + sin(x) ;
        sum = output[i] + sum;
    }
   sum = sum + foo(input[30 - 10]);
   printf("%f \n", sum);
   tobememoize(4,65);
   
   return 0;
} 

#include …
#include "memoizing_wrappers.h"

 

double logarithm( double value, double y )
{ return y * log_wrapper( 1 + value ); }

int tobememoize (int a, int b) 
{  return  (a + b); }

double foo(double v)
{  return  ( v * v ); }

int main()  {
    double const input[30] = { … };
    double output[30], sum, x;

    tobememoize_wrapper(88, 66);
    tobememoize_wrapper(4, 65);

    for( int i = 0; i < 30; i++ ) 
    {
        x =  input[i] ;
        output[i] = logarithm( x, 45.0) + sin(x) ;
        sum = output[i] + sum;
    }
   sum = sum + foo_wrapper(input[30 - 10]);
   printf("%f \n", sum);
   tobememoize_wrapper(4,65);
   
   return 0;
} 

LARA

DEF(0,log, log_wrapper,1, double, 0, none, no, none, yes, 65536)
DEF(1,tobememoize, tobememoize_wrapper,2, int, 0, none, no, none, yes, 65536)
DEF(1,foo, foo_wrapper,2, double, 0, none, no, none, yes, 65536)

funs-static.def

import clava.Clava;
import clava.ClavaJoinPoints;
import antarex.memoi.Memoization;

aspectdef Launcher

     2      call Memoize_MathFunction('log');
     3      call Memoize_Function ('tobememoize');

     4      call Memoize_Function('foo');

5    call Memoize_Finalize() ;

end

    1    call Memoize_Initialize() ;

#include "memoizing_exposedVars.h"

INRIA_memoInit(1);

Figure 4: The memoization using LARA
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memoization_wrappers.h) are added to the weaved sources. The memoization_exposedVars.h
file contains the declarations of the exported variables for runtime autotuning with their ini-
tialisations (See Figure 5).

1 #ifndef _MEMOIZING_EXPOSEDVARS_H_

2 #define _MEMOIZING_EXPOSEDVARS_H_

3
4 extern int _alwaysReplacefoo , _FullyOffLinefoo;

5 int _Memoize_foo = 1;

6
7 extern int _alwaysReplacetobememoize , _FullyOffLinetobememoize;

8 int _Memoize_tobememoize = 1;

9
10 extern int _alwaysReplacelog , _FullyOffLinelog;

11 int _Memoize_log = 1;

12
13 void INRIA_memoInit(int B) {

14 _Memoize_foo= B;

15 _Memoize_tobememoize= B;

16 _Memoize_log= B;

17 }

18 #endif

Figure 5: Exposed variables declarations.

The memoization_wrappers.h file contains the declarations of the associated wrappers as
shown in Figure 6.

1 #ifndef _MEMOIZING_WRAPPERS_H_

2 #define _MEMOIZING_WRAPPERS_H_

3
4 #ifdef __cplusplus

5 #define __EXTERN__ extern "C"

6 #else

7 #define __EXTERN__

8 #endif

9
10 __EXTERN__ double foo_wrapper (double);

11 __EXTERN__ int tobememoize_wrapper (int , int);

12 __EXTERN__ double log_wrapper(double);

13 #endif

Figure 6: Declarations of the wrappers.

The second part of the produced code with LARA is the file called ”funcstatic.def”. It
contains the required information to produce the definitions of the wrapper functions that will
be used to produce a library. This libray will be linked with the weaved code to produce the
final binary. It will be presented after the presentation of the use of the memoization aspects
for a C++ program.

3.3.2 Using the memoization aspects for a C++ program

To illustrate the use of the presented memoization aspects on a C++ program, consider the
’toyExample’ program in Figure 7. In this code, the main references two objects of different
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classes anObj of class Test and anObj2 of the class Test2. The code of these classes is also
shown in Figure 7.

One can observe that the methods :int Test::function1(int x, int y)

and int Test2::function1(int x) are memoizable: they are pure methods and they satisfy
the interface constraints expressed above. To memoize these methods, the aspect shown in
Figure 8 may be applied.

Note that in this example, the mangling induced by the C++ compiler must be taken into
account. The definitions in the file funs-static.def (See Figure 9) are generated taking into
account this mangling.

1 DEF(1, _ZN5Test29function1Ei , _ZN5Test217function1_wrapperEi ,1,int ,0,none ,no

,none ,no ,65536 )

2 DEF(1, _ZN4Test9function1Eii , _ZN4Test17function1_wrapperEii ,2,int ,17,none ,

no ,none ,yes ,2048 )

3 \end{lstlisting}

Figure 9: Declaration of the functions to memoize.

On Figure 10, the weaved code by LARA is presented. Note that for C++, the wrapper is
a new method declared in the associated class(See Figure 11).

1 #include <iostream>

2 #include <cmath>

3 #include <s t d l i b . h>

4 #include " T e s t . h "

5 #include " T e s t 2 . h "

6 #include " m e m o i z i n g _ e x p o s e d V a r s . h "

7 us ing namespace std ;

8 int main ( int argc , char ∗ argv [ ] ) {
9 INRIA memoInit (1 ) ;

10 int y , x , z ;

11 Test anObj ;

12 Test2 anObj2 ;

13 x = 0 ;

14 int N = 1000;

15 for ( int k = 0 ; k < N; k++)

16 for ( int i = 0 ; i < 1000000; i++) {
17 y = anObj . funct ion1 wrapper (10 + i , 20 + i ) + anObj2 . funct ion1 wrapper (33) ;

18 z = anObj . funct ion1 wrapper (10 + i , 20 + i ) ;

19 x = x + y + z + anObj . funct ion1 wrapper (100 , 28) + anObj2 . funct ion1 wrapper (100) ;

20 }
21 cout << " x = " << x << endl ;

22 return x ;

23 }

Figure 10: Weaved code of the memoized C++ example.
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1 #ifndef TEST H

2 #define TEST H

3 c l a s s Test {
4 pr i va t e :

5 int data1 ;

6 f loat data2 ;

7 pub l i c :

8 int funct ion1 wrapper ( int , int ) ;

9 int func t i on1 ( int x , int y ) ;

10 f loat funct i on2 ( ) ;

11 } ;
12 #endif

13
14 #ifndef TEST2 H

15 #define TEST2 H

16 c l a s s Test2 {
17 pr i va t e :

18 int data1 ;

19 f loat data2 ;

20 pub l i c :

21 int funct ion1 wrapper ( int ) ;

22 int func t i on1 ( int x ) ;

23 f loat funct i on2 ( ) ;

24 } ;
25 #endif

Figure 11: Weaved code (classes) of the memoized C++ example.

3.3.3 Producing the memoization library

To run the application with memoization, a library is produced from the content of the
funs-static.def file. It requires the memoization package provided at [4]. Ones can im-
port the templates/CMakeList.txt file [5] provided in the distribution and adapt it to the
application. Figure 12 shows the modified version of the example.
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1 PROJECT(MYPROJECT CXX C)

2
3 # r e qu i r e the MEMOIZATION environment .

4 IF (NOT EXISTS " $ E N V { M E M O I Z A T I O N _ R O O T } " )

5 MESSAGE( " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = " )

6 MESSAGE( " The v a r i a b l e M E M O I Z A T I O N _ R O O T is not d e f i n e d ... e x i t i n g " )

7 MESSAGE( " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = " )

8 MESSAGE(FATAL ERROR)

9 RETURN()

10 ENDIF(NOT EXISTS " $ E N V { M E M O I Z A T I O N _ R O O T } " )

11
12 SET(MEMOIZATION ROOT $ENV{MEMOIZATION ROOT})
13
14 # Binary name o f my app l i c a t i on .

15 SET(APP NAME toyExampleCpp )

16
17 # Sources

18 SET(APP NAME SRC toyExampleCpp . cpp Test2 . cpp Test . cpp )

19
20 # L i b r a r i e s

21 SET(LIBS m)

22
23 # Comment t h i s l ine to have a non dynamical management o f the memoization .

24 ADD DEFINITIONS( −DDYNAMICMODE )

25
26 # Uncomment t h i s l ine to have some s t a t i s t i c s about the memoization .

27 # ADD DEFINITIONS( −DMEMOISTATS)

28
29 # Production o f the memoization l i b r a r y (memoize ) from funs−stat ic . de f

30 INCLUDE(${MEMOIZATION ROOT}/ templates /memoization . cmake )

31
32 ADD EXECUTABLE( ${APP NAME} ${APP NAME SRC})
33 # Appl i cat ion i s l i nked with the memoize l i b r a r y .

34 TARGET LINK LIBRARIES( ${APP NAME} ${LIBS} memoize )

Figure 12: the cmake file of the ’toy example’

On this figure,

• The lines 3-10 test if the memoization library is known in the user environment: the shell
variable MEMOIZATION_ROOT must be set.

• The lines 14-21 are used to defined the components of the user application (source, in-
cludes, libraries)

• The line 24 specifies if the memoization will be managed in a dynamical way. When the
definition is present, the memoization of functions and methods may be suspended and
restarted dynamically. The user can reference the exposed variables in its source.

• The line 27 specifies the production of some statistics about the memoization library. For
each memoized function or method, the number of requests, the number of hits and the
number of collisions are printed out.

• The line 30 specifies the production of the memoization library, using the funs-static.def
file (on Linux, the generated file will be libmemoize.a). Note that the produced mem-
oization library of the application (memoize) is linked with the user application (line
34).
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4 Experimental results

Results of the application of the memoization have been integrated in a paper submitted to
the softwareX journal [6]. Overall, the use of our memoization framework allows us to achieve
considerable reductions in both execution time and energy consumption.

We give here some other results not published about the application of approximation during
the memoization. The figure 13 recalls the principles of the approximation. The approximation
parameter, that has sense on the significant, allows to not distinguish very near parameter values
of the inputs of the function or method.

To illustrate the impact of the approximation parameter, we have tested on two of the
benchmark examples exposed in the softwareX journal:

• fft is a Fast Fourier transform implementation extracted from the BenchFFT [7] bench-
mark suite. It calls the functions sin and cos. The maximun gain (14.18%) was obtained
when the size of the table is 256 and the table is updated each time on collision. Playing
with the approximation parameter of the memoization, the gain may be around 20% when
this parameter is equal to 32, without any loss of precision in the results.

• rgb2hsi is a benchmarking kernel that converts images from RGB model to HSI model. It
calls cos, acos, sqrt, and a pure user function. The maximun gain (27.07%) was obtained
when the size of the table is 65536 and the table is updated each time on collision. With
an approximation parameter fixed to 47, the gain is about 32%, without visible effects on
the resulting picture.

5 Conclusion

This chapter presented the framework developed in the ANTAREX project to automatically
apply memoization on C/C++ applications. The resulting applications store outputs of pure
functions mapped by their inputs. If these pure functions are called with the same inputs, the
framework returns the stored value instead of recomputing it.

Hence, this technique may lead to execution time and energy consumption improvements
by simply avoiding unnecessary computations in scenarios where critical functions are called
with repeating inputs. The results of the application of this technology on several examples
show the usefulness of the memoization technique. The advantage of the developed aspects is
that the memoization is integrated into the application without requiring user modifications of
the source code. The code generated by Clava is then compiled and linked with the associated
generated memoization library.
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Figure 7: Code of a ’toy example’ C++ program.
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1 import clava.Clava;

2 import clava.ClavaJoinPoints;

3 import antarex.memoi.Memoization;

4
5 aspectdef Launcher

6 call Memoize_Initialize( );

7 call Memoize_Method_ARGS(’Test’, ’function1 ’,’none’, ’no’, ’none’, ’

yes’, 17, 2048);

8 call Memoize_Method(’Test2’, ’function1 ’);

9 call Memoize_Finalize( );

10 end

Figure 8: LARA aspect for the memoization C++ program.

Figure 13: Principles of the approximation.
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