Chapter 4. Split Compilation: the
LIBVERSIONINGCOMPILER Approach

Stefano Cherubin and Giovanni Agosta

Politecnico di Milano, Italy
{stefano.cherubin, giovanni.agosta}polimi.it

Abstract

LIBVERSIONINGCOMPILER is a library that allows partial dynamic recompilation within
an application. It is designed to ease the burden of performing continuous program opti-
mization within the context of High Performance Computing applications. In the context
of the ANTAREX tool flow, LIBVERSIONINGCOMPILER can be employed through the
ANTAREX DSL, so that its operation can be combined with that of other components of
the toolchain, to achieve fine tuning of compilation options and code version management.

1 Motivation

Designing and implementing High Performance Computing (HPC) applications is a difficult
and complex task that requires mastery of several specialized languages and performance-
tuning tools; however, this prerequisite is incompatible with the current trend that opens HPC
infrastructures to a wider range of users [I 2]. The current model that sees the HPC center
staff directly supporting the development of applications will become unsustainable in the
long term. Thus, the availability of effective APIs and programming languages is crucial to
provide migration paths towards novel heterogeneous HPC platforms as well as to guarantee
the developers’ ability to work effectively on these platforms.

Profile-guided code transformations at compile-time usually provide a good optimization
level in a general-purpose scenario. On the contrary, in HPC scenarios where large data sets
are employed, a proper profiling may be unfeasible. In these cases, which are becoming more
and more common [3], dynamic approaches can prove more effective. The practice of improving
the application code at runtime through dynamic recompilation is known as continuous program
optimization [4, 5 [6]. Although it has been studied for more than a decade, very few people
adopt it in practice since it is difficult to perform manually, and, when performed automatically,
it can compromise software maintainability. At the same time, autotuning is used both to tune
software parameters and to search the space of compiler optimizations for optimal solutions [7].
Autotuning frameworks can select one of a set of different versions of the same computational
kernel to best fit the HPC system runtime conditions, such as system resource partitioning,
as long as such versions are generated at compile time. Few of these frameworks are actually
able to perform continuous optimization, and those that support it do so only through specific
versions of a dynamic compiler [§, 9] or through cloud-based platforms [10].

LIBVERSIONINGCOMPILER (abbreviated LIBVC) can be used to perform continuous pro-
gram optimization using simple C++ APIs. LIBVC allows different versions of the executable

4.1

mailto:stefano.cherubin@polimi.it
mailto:giovanni.agosta@polimi.it

code of a computational kernel to be transparently generated on-the-fly. Continuous program
optimization with LIBVC can be performed by dynamically enabling or disabling code trans-
formations, and changing compile-time parameters according to the decisions of other software
tools such as a generic application autotuner.

The rest of the chapter is organized as follows. In section [2| we discuss the background
and related works on partial dynamic recompilation and split compilation. In section we
describe the software architecture, the internal APIs and their functionalities. In section
we introduce an example of intended use and discuss benefits and overhead deriving from
the implementation of continuous program optimization through LIBVC in a generic scenario.
Finally, we draw some conclusions in section [5]

2 Background and Related Works

Partial dynamic (re)compilation is a technique used as part of continuous program optimi-
sation [4]. Tt allows the compiler to further optimize the code, during the execution of long
runs of an application, which are typical of HPC scenarios. While most high level languages
include mechanisms for selective compilation which can be exploited for fine tuning the dy-
namic compilation options, e.g. for hiding compilation latencies [I1], the C/C++ applications
commonly used in HPC scenarios generally lack this option. Some support is provided by
domain-specific tools, such as RuntimeCompiledC++ [12], which focuses on interactive modifi-
cation and recompilation of program fragments by the programmer. To enable partial dynamic
compilation, ANTAREX DSL aspects can introduce calls to a support library, LIBVC [I3],
allowing to weaken the boundary between compile-time and runtime, and enabling continuous
optimization.

3 libVersioningCompiler

3.1 Software Architecture

The goal of LIBVC is to allow C/C++ compute kernels to be dynamically compiled multiple
times while the program is running, so that different specialized versions of the code can be
generated and invoked. This capability is especially useful when the optimal parametrization
of the compiler depends on the program workload. In these cases, the ability to switch at
runtime between different versions of the same code can provide significant benefits, as shown
in [14, 5]

Indeed, in general-purpose code it is preferable to profile the application to statically gen-
erate ahead of time the most efficient versions. However, in HPC code the execution times are
usually so long that a profiling run may not be an attractive choice. On the contrary, LIBVC
enables the exploration and tuning of the parameter space of the compiler at runtime, while
the program is performing useful work.

LIBVC considers as valid compute kernels any C-like procedure or function that can be
compiled to object code. There is just one constraint that should be enforced on the compute
kernel: it must respect C linkage rules. This means that no name mangling should be applied
to the compute kernel itself. Within our model, the Compiler is the tool used to compile
the compute kernel, and the Version is the configuration passed to the compilation task. We
assume to work with deterministic Compilers. In this scenario, a Version produces at most one
executable code. No executable code is generated when the specified configuration is invalid.

4.2

Option Compiler

- tag: std::string - id: std::string

- value : std::string # logFile : std::string

- prefix : std::string # libWorkingDirectory : std::string
+getTag() : std::string +getld() : std::string

+getValue() : std::string

. . +haslIRSupport() : bool
+getPrefix() : std::string

+hasOptimizer() : bool
+getOptionString(o :Option) : std::string

+generatelR(
src : std::string,

. func : std::string,
Version . versionlID : std::string,
options : std::list<Options>) : std::string

- id: std::string e
- functionName: std::string +run0pt|m|zer(.
) . src : std::string,
- fileName_src: std::string versionID : std::string,
- fileName_IR: std::string options : std::list<Options>) : std::string
- fileName_IR_opt : std::string +generateBin(

src : std::string,

- fileName_bin: std::string func : std::string

- handle : void* versionID : std::string,

- optionList : std::list<Option> options : std::list<Options>) : std::string
- genlRoptionList : std::list<Option> +loadSymbol(

- optOptionList : std::list<Option> bin : std::string,

- compiler : std::shared_ptr<Compiler> func : std::string) : void*

+getld() : std::string A 4
+preparelR() : bool

+compile() : bool ClangLibCompiler

+getSymbol() : void*

SystemCompilerOptimizer SystemCompiler

Figure 1: Simplified UML class diagram of LiBVC

The LIBVC source code is available under the LGPLv3 licence. It is compliant with the
C++11 standard and it comes with configuration files to ease the setup by using the CMake build
system. The minimum required CMake version is 3.0.2. The build system automatically checks
the presence of the optional dependencies LLVM and 1ibClang, whose version must be greater
than 4.0.0. Whenever these dependencies are not satisfied, some features are automatically
disabled during the library installation.

Description of the software model Figure [1| shows a simplified UML class diagram of
this software. It is possible to identify three main classes in the source code. The simplest
class, which is called Option, represents each of the flag and parameters that are passed to
LIBVC in order to compile a version of a computing kernel. The Compiler abstract class
defines the interface that allows the host application to interact with Compiler implementations.
LIBVC provides up to three possible implementations for the Compiler abstract class: System-

4.3

Compiler, which relies on system calls to external compilers that are already installed in the
host system; SystemCompilerOptimizer, which is an extension of a SystemCompiler that
also supports external optimization tools (such as the LLVM optimizer opt); and ClangLib-
Compiler, which exploits the compiler-as-a-library paradigm through the Clang APIsE]. Please
note that ClangLibCompiler is installed only if LLVM and 1ibClang dependencies are satisfied.
The last important class is the Version class, which represents a compute kernel defined in a
specific source file, with a given compiler configuration. A Version object is compiled with the
chosen Compiler using an ordered list of Options. It contains a unique identifier, references to
Compiler and Options used to compile it, and references to the files that are generated by the
Compiler while compiling the Version. The configuration of a Version object is immutable
throughout the lifetime of that object. The Version class also provides APIs to control the
stages of the compilation process: it is possible to create a Version object and postpone the
execution of the selected Compiler to a later stage.

3.2 Usage Examples

LIBVC provides an easy-to-use interface that can be employed to perform the dynamic com-
pilation of a kernel, and to load compiled Versions as C-like function pointers. LIBVC itself
does not provide any automatic selection of which Version should be executed. The decision of
which Version is the most suitable for a given task is left to policies defined by the programmer
or other autotuning frameworks such as mARGO% [16] or ¢Tuning [17].

LIBVC comes with two different flavours: with detailed low-level APIs and with simple
high-level APIs. The latter is optimized for the most common use cases, they exploit the
default system compiler and do not support any external optimization tool, whereas low-level
APIs allow a more fine grained setup and support split-compilation techniques [I8]; hence, the
resulting source code is slightly more verbose.

The typical usage of LIBVC involves different stages. The first task must be the declaration
and initialization of the Version-independent tools, such as Compilers and Version builders,
which are helper objects designed to properly setup a Version configuration. Low-level APIs
allow the programmer to customize one or more Compiler implementations. High-level APIs
expose a special function to transparently perform this task; it is required to be invoked just once
in the whole process lifetime. After that, it is possible to proceed to the Version configuration.
The programmer can, by using low-level APIs, dynamically forge and arrange Options, set
the chosen Compilers, manipulate file and kernel names to identify the code to be compiled.
The Version builder is the component which allows this low-level setup. Once the Version
builder has its fields filled up, it can be finalized to generate a Version object. High-level
APIs receive all these parameters and produce a Version object in a single function call.
High-level APIs limit the configuration to one Version at the time while low-level APIs allows
parallel configuration of multiple Versions. Once a Version object is finalized, it has to be
compiled. The compilation task is activated by the programmer through a dedicated API.
It may trigger more than one sub-task when it involves split-compilation techniques. In the
absence of compilation errors, and regardless of which APIs are being used, at the end of this
stage LIBVC generates a binary shared object. From this same shared object LIBVC loads one
or more function pointer symbols, which point to the kernel functions in the shared object.

The target kernels may include other files or refer to external symbols. LIBVC will act
just as a compiler invocation and will try to resolve external symbols according to the given
compiler and linker options.

http://clang.1lvm.org/docs/Tooling.html

4.4

http://clang.llvm.org/docs/Tooling.html

LIBVC defers the resolution of the compilation parameters to run-time. The only piece of
information that is needed at design-time is the prototype of each kernel, which have to be used
for a proper function pointer cast.

LIBVC also provides hooks to enable tracking and versioning of the compiled versions.

LIBVC can be exploited to apply a wide range of optimization through the dynamic compi-
lation. The official repositoryf| provides some examples of usage in the test files. In this section
we show and discuss a generic use case of continuous program optimization performed through
LIBVC. Listing (1] illustrates the dynamic adaptation of a counting sort algorithm to the data
workload. In particular, the counting sort implementation is specialized through recompilation
using LIBVC every time the min and max value of range of the data to be sorted change. When
the min and max values of the range of the data are known at compile-time it is possible to
perform array allocation and loop optimizations more efficiently.

Listing 1: Benchmark of a statically linked kernel performing counting sort against a dynami-
cally compiled version of the same kernel using LIBVC high-level APIs

// libVersioningCompiler High—Level API header file
#include ”versioningCompiler/Utils.hpp”

// define kernel signature
typedef void (xkernel_t)(std::vector<int32_t> &array);

ve::version_ptr_t getDynamicVersion(int32_t min, int32_t max) {
// wversion configuration wusing libVC — start
const std::string kernel_dir = PATH TOKERNEL;
const std::string kernel_file = kernel_dir + ”kernel.cpp”;
const std::string functionName = ”"vc_sort”;
const vc::opt_-list_t opt_-list = {
ve :: make_option (”—03”) ,
ve:: make_option (?—std=c++117) ,
ve:: make_option (?—I7+kernel_dir),
ve :: make_option ("-DMIN_-VALUE RANGE="+std :: to_string (min)) ,
ve :: make_option ("-D.MAX VALUE RANGE="+std :: to_string (max)) ,

&
ve::version_ptr_t version = vc::createVersion(kernel_file , functionName ,
opt_list);
// wersion configuration wusing libVC — end
// wversion compilation — start
kernel_t f = (kernel_t) vc::compileAndGetSymbol(version);
it ()
return version;
}
// wersion compilation — end

return nullptr;

}

int main(int argc, char const xargv[]) {
const std::vector<std:: pair<int, int> > data_range = {
std :: make_pair<int ,int >(0,256) ,
std :: make_pair<int ,int >(0,512),
std :: make_pair<int ,int >(0,1024) ,
};

const size_t data_size = 1000000000;

’https://github.com/skeru/libVersioningCompiler

4.5

© 0 9 O oA W N

=
=]

12

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

https://github.com/skeru/libVersioningCompiler

// initialize libVersioningCompiler
ve::ve_utils_init ();

for (const auto range : data_range) {
TimeMonitor time_monitor_ref;
TimeMonitor time_monitor_dyn;
TimeMonitor time_monitor_ovh;

// running reference version — statically linked
for (size_t i = 0; i < iterations; i++) {
// produce workload to process
auto wl = WorkloadProducer<int32_t >::get_ WL _with_bounds(range. first , range
.second) ;
const auto meta = wl.getMetadata () ;
time_monitor_ref.start () ;
sort (wl.data, meta.minVal, meta.maxVal); // call reference
time_monitor_ref.stop();

}

// measuring overhead of preparing a new version — start
time_monitor_ovh.start () ;

auto v = getDynamicVersion(range.first , range.second);

kernel_t my_sort = (kernel_t) v—>getSymbol(0);
time_monitor_ovh.stop () ;
// measuring overhead of preparing a new version — end

// running dynamic version — dynamically compiled
for (size_t i = 0; i < iterations; i++) {
// produce workload to process
auto wl = WorkloadProducer<int32_t >::get_WL_with_bounds(range. first , range
.second) ;
time_monitor_dyn.start () ;
my _sort (wl.data); // just a call to a function pointer
time_monitor_dyn.stop () ;

}

// consider average time—to—solution
std :: cout << range.second << 7.” << time_monitor_ref.getAvg()) << 7.7 <<
time_monitor_dyn.getAvg()) << 7.” << time_monitor_ovh.getAvg()) << std::
endl;
}

return 0;

}

Listing [1] reveals the several stages of the compilation flow of LIBVC. In the main function,
an initialization is needed before using LIBVC. This is done in line [40| using a simple API invo-
cation. From line |8 to line 20| we see how to configure a new Version for dynamic compilation.
The following lines - perform the actual dynamic compilation. It is possible to notice
in line |69| the call to the dynamically compiled kernel, which is very similar to the call to a
statically linked kernel (line [53).

It is also possible to use LIBVC to dynamically compile and run several functions or the
same function with different options. A more complex example of usage of LIBVC which
exploits these features can be found on githubf¥] where we dynamically compile and run the full
PolyBench/C [19] benchmark suite within the same C++ program.

3https://github.com/skeru/polybench_1ibVC

4.6

40
41
42
43
44
45
46
47
48
49

50

59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74

76
7

https://github.com/skeru/polybench_libVC

3.3 ANTAREX DSL Integration

One of the strategies supported in the ANTAREX toolflow is the capability to generate versions
of a function and to select the one that satisfies certain requirements at runtime. Figure [2]shows
an aspect that clones a set of functions and changes the types of the newly generated clones.
Each clone has the same name as the original with the addition of a provided suffix. We start
with a single user-defined function which is cloned by the aspect CloneFunction (called in line
13). Then, it recursively traverses calls to other functions inside the clone and generates a clone
for each of them. Inside the clones, calls to the original functions are changed to calls to the
clones instead, building a new call tree with the generated clones. At the end of the aspect
CreateFloatVersion (lines 16-17,) we use the previously defined ChangePrecision aspect to
change the types of all generate clones.

import ChangePrecision;
import clava.ClavaJoinPoints;

aspectdef CreateFloatVersion
input $func, suffix end
output $clonedFunc end

$double = ClavaJoinPoints.builtinType(’double’);
$float = ClavaJoinPoints.builtinType(’float’);

/* clone the target functions and the child calls */
var clonedFuncs = {};
cloned : CloneFunction($func, suffix, clonedFuncs);

/* change the precision of the cloned function */
for($clonedFunc of clonedFuncs)
ChangePrecision($clonedFunc, $double, $float);

$clonedFunc = cloned.$clonedFunc;
end

Figure 2: Example of LARA aspect to clone an existing function and change the type of the
clone.

The aspect Multiversion — in Figure |3|— adapts the source code of the application in order
to call the original version of a function or a generated cloned version with a different type,
according to the value of a parameter given by the autotuner at runtime. The main aspect calls
the previously shown aspect, CreateFloatVersion, which clones the target function and every
other function it uses, while also changing their variable types from double to float (using
the aspects presented in Figure [2).This is performed in lines 8-9 of the example. From lines
13 to 34, the Multiversion aspect generates and inserts code in the application that is used
as switching mechanism between the two versions. It starts by declaring a variable to be used
as a knob by the autotuner, then it generates the code for a switch statement and replaces the
statement containing the original call with the generated switch code. Finally, in lines 36-38,
the aspect surrounds both calls (original and float version) with timing code. An excerpt of
the resulting C code can bee seen in Figure

In the ANTAREX toolflow, the capability of providing several versions of the same function
is not limited to static features. LIBVC enables the exploration and tuning of the parameter
space of the compiler at runtime.

Figure |5/ shows an example of usage of LIBVC through LARA, which demonstrates how to
specialize a function. The user provides this aspect with a target function call and a set of
compilation options. These include compiler flags and possible compiler definitions, e.g., data

4.7

import CreateFloatVersion;
import lara.code.Timer;
import clava.ClavaJoinPoints;

aspectdef Multiversion
input $func, knobName end

fVersion : CreateFloatVersion($func, "_f");
var $floatFunc = fVersion.$clonedFunc;
var timer = new Timer();

/* Identify call by name... */
select function.body.stmt. {$func.name} end
apply
/* ... and by type signature */
if (! $func.functionType.equals($call.functionType))
continue;

/* Add knob for choosing the version */
$int = ClavaJoinPoints.builtinType(’int’);
$body . addLocal (knobName, $int, 0);

/* create float declaration for first argument */
var $arg = createFloatArg($call.args[0]);
/* Create call based on float version of function */

$floatFunc. $fCall : newCall ([$arg, $call.args([1]]);
/* Copy current call x*/
$call. $callCopy : copy();
/* Create switch */
var $condition = ClavaJoinPoints.exprLiteral (knobName) ;
var switchCases = {0: $callCopy, 1: $fCalll;

switchJp : CreateSwitch($condition, switchCases);
$stmt . replaceWith(switchJp.$switch) ;

/* Time calls to both original and float functionsx*/
timer.time ($callCopy, "Original time:");
timer.time ($£fCall, "Float time:");
end
end

Figure 3: Example of LARA aspect that generates an alternative version of a function and
inserts a mechanism in the code to switch between versions.

discovered at runtime, which is used as a compile-time constant in the new version. Based on
the target function call, the aspect finds the function definition which is passed to the library.
After the options are set, the original function call is replaced with a call of the newly compiled
and loaded specialized version of the kernel.

It is worth noting that the combination of LARA and LIBVC can also be used to support
compiler flag selection and phase-ordering both statically and dynamically.

4 Experimental Evaluation

As proof of concept, we tested the benefits of continuous program optimization implemented
with LIBVC by comparing the time-to-solution of the statically linked kernel against a dynami-
cally compiled version of the same kernel, as shown in listing [T} We compiled both the statically
linked and the dynamically compiled kernels using the same compiler and the same optimiza-
tion level. A full project using code from listing |1 is available on githulﬂ. We run this example

‘https://github.com/skeru/countingsort_libVC

4.8

https://github.com/skeru/countingsort_libVC

switch (version) {
case 0: {
clock_gettime (CLOCK_MONOTONIC, &time_start_0);
SumOfInternalDistances (atoms, 1000);
clock_gettime (CLOCK_MONOTONIC, &time_end_0);

double time_0O = calc_time(time_start_0, time_end_0);
printf ("Original time:%fms\n", time_0);

}

break;

case 1: {
clock_gettime (CLOCK_MONOTONIC, &time_start_1);
SumOfInternalDistances_f (atoms_f, 1000);
clock_gettime (CLOCK_MONOTONIC, &time_end_1);

double time_1 = calc_time(time_start_1, time_end_1);
printf ("Float time::%fms\n", time_1);

}

break;

Figure 4: Excerpt of the C code resulting from the generation of alternative code versions.

to sort an array of 1 billion 32-bits integers. The platform used to execute the experiment is a
supercomputer NUMA node that features two Intel Xeon E5-2630 V3 CPUs (@2.4 GHz) with
128 GB of DDR4 memory (@1866 MHz) on a dual channel memory configuration.

Range TTS TTS speedup | overhead payback
size reference LiBVC

[elements] [ms| [ms] (%] | [ms] iterations]
256 2831.33 2368.12 19.56 | 1355.99 3
512 2822.84 2352.27 20.00 | 1345.25 3
1024 2820.67 2347.28 20.17 | 1356.86 3
2048 2831.92 2351.99 20.41 | 1361.37 3
4096 2914.13 2440.47 19.41 | 1353.05 3
8192 3967.59 3966.21 0.03 | 1354.12 982
16384 5168.64 5163.51 0.10 | 1370.82 268
32768 6459.75 6430.77 0.45 | 1358.26 47

Table 1: Experimental results of Time-To-Solution (TTS) averaged over 100 executions on a
Ubuntu x86_64 system. Kernels were compiled using gcc 5.4.0 with optimization level -03.

Table[1|shows that dynamically compiled kernels always performs better with respect to the
reference statically linked implementation. We define as range size the difference between max
and min values of the range of the data to be sorted. We observe an important speedup when
the range size is smaller than 8192 possible values. In those cases the main part of the speedup
comes from a more efficient memory allocation of the array in the dynamically compiled kernels.
We also notice that the overhead of dynamically compiling a new Version is not related with
the range size. This overhead can be absorbed within 3 iterations when the range size is small,
and within less than one thousand iterations in the worst case.

Case Study: Geometrical Docking Miniapp To assess the impact of the proposed tools
on a real-world application we employ a miniapp developed within the ANTAREX project [20]
to emulate the workload of the geometric approach to molecular docking. This class of ap-
plication is useful in the in-silico drug-discovery process, which is an emerging application

4.9

import antarex.libvc.LibVC;

aspectdef SimpleLibVC

input
name, $target, options
end
var $function = $target.definition;

var lvc = new LibVC($function, {logFile:"log.txt"}, name);

var lvcOptions = new LibVCOptions();

for (var o of options) {
lvcOptions.addOptionLiteral (o.name, o.value, o.value);

}

lvc.setOptions (lvcOptions) ;

lvc.setErrorStrategyExit ();

lvc.replaceCall($target);
end

Figure 5: Example of LARA aspect to replace a function call to a kernel with a call to a
dynamically generated version of that kernel.

of HPC, and consists in finding the best fitting ligand molecule with a pocket in the target
molecule [2I]. This process is performed by approximating the chemical interactions with the
proximity between atoms.

We processed a database of 113161 ligand molecule - pocket pairs on the same test platform
we describe in section [3.2] The evaluation of every ligand molecule - pocket pair is independent
with respect to the other pairs. Therefore, we implemented an MPI-based version of the same
miniapp. The input dataset is partitioned among the slave processes.

The initial code base was not developed by the authors, it was developed by another team
at Politecnico di Milano. We integrated the code which is executed by each slave process with
LIBVC, as for the serial version. It took one hour of work to integrate the miniapp source code
with the LIBVC. The integration required to add or modify a total of 60 lines of code over an
original code size of 1300 lines of code, which is less than 5% of the code size.

The baseline miniapp took 4354.95 seconds before the integration. After the integration
the miniapp took 1783.93 seconds — including the overhead for dynamic compilation — for a
speedup of 2.44x with respect to the baseline. The speedup is achieved by exploiting code
specialization on geometrical functions.

Although the overhead of performing dynamic compilation on every parallel process slows
down the running time, the speedup we obtained in the serial version of the miniapp is confirmed
also in the parallel case. We run the MPI-based miniapp using 4, 8, 16, and 32 parallel processes.
We obtained a speedup of 2.39x, 2.24x, 1.99x, and 1.63x respectively.

Case Study: OpenModelica Compiler To assess the impact of the proposed tools on
a legacy code we employ the C code which is automatically generated by a state-of-the-art
compiler for Modelica. Modelica is a widely-used object-oriented language for modeling and
simulation of complex systems. OpenModelica [22] is an open source compiler for the Modelica
language. It translates Modelica code into C code, which is later compiled with clang and
linked against an external equation solver library.

As test case, we simulated a transmission line model [23] of 1000 elements. We modified the

4.10

C and Makefile code automatically generated by the OpenModelica compiler to integrate the
simulation C source code with LIBVC and properly compile it. It took two hours of work to
integrate the automatically generated code with the LIBVC. The integration required to add
or modify a total of 65 lines of C code and 5 lines of Makefile code over an original code size of
633390 lines of code, which is less than 0.015% of the code size.

The baseline code took 374.25 seconds before the integration. After the integration the
simulation took 295.00 seconds — including the overhead for dynamic compilation — for a speedup
of 1.27x with respect to the baseline. The speedup is achieved by recompiling the C code which
implements the model description by using a deeper optimization level (-03) with respect to
the default one (-00). In this case, the compilation time that it is spent on optimizations is
widely paid back by a faster execution time.

5 Conclusions

We have presented LIBVC, a lightweight library to support continuous optimization in HPC
environments. The tool is employed within the context of the ANTAREX project to optimize
the execution of computationally intensive kernels that are repeatedly called within large scale
applications with long execution times. While the library is designed to be integrated with
other tools in the ANTAREX workflow, it can also be used as a standalone tool with minimal
effort by application developers.

References

[1] W. Ziegler, R. D’Ippolito, M. D’Auria, J. Berends, M. Nelissen, and R. Diaz. Implementing a “one-
stop-shop” providing smes with integrated hpc simulation resources using fortissimo resources.
In eChallenges e-2014 Conference Proceedings, pages 1-11, Oct 2014.

[2] Bastian Koller, Nico Struckmann, Jochen Buchholz, and Michael Gienger. Towards an envi-
ronment to deliver high performance computing to small and medium enterprises. In Sustained
Stmulation Performance 2015, pages 41-50. Springer, 2015.

[3] Daniel A. Reed and Jack Dongarra. Exascale computing and big data. Communications of the
ACM, 58(7):56—68, June 2015.

[4] Thomas Kistler and Michael Franz. Continuous program optimization: A case study. ACM
Trans. Program. Lang. Syst., 25(4):500-548, July 2003.

[5] Dorit Nuzman, Revital Eres, Sergei Dyshel, Marcel Zalmanovici, and Jose Castanos. Jit tech-
nology with c/c++: Feedback-directed dynamic recompilation for statically compiled languages.
ACM Trans. Archit. Code Optim., 10(4):59:1-59:25, December 2013.

[6] Brian Fahs, Todd Rafacz, Sanjay J. Patel, and Steven S. Lumetta. Continuous optimization. In
Proceedings of the 32Nd Annual International Symposium on Computer Architecture, ISCA 05,
pages 86-97, Washington, DC, USA, 2005. IEEE Computer Society.

[7] Siegfried Benkner, Franz Franchetti, Hans Michael Gerndt, and Jeffrey K Hollingsworth. Auto-
matic Application Tuning for HPC Architectures (Dagstuhl Seminar 13401). Dagstuhl Reports,
3(9):214-244, 2014.

[8] Howard Chen, Jiwei Lu, Wei-Chung Hsu, and Pen-Chung Yew. Continuous adaptive object-code
re-optimization framework. In Pen-Chung Yew and Jingling Xue, editors, Advances in Computer
Systems Architecture, pages 241-255, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

4.11

[9]

[18]

[19]

[20]

[21]

22]

Protonu Basu, Samuel Williams, Brian Van Straalen, Leonid Oliker, Phillip Colella, and Mary
Hall. Compiler-based code generation and autotuning for geometric multigrid on gpu-accelerated
supercomputers. Parallel Computing, 64(Supplement C):50 — 64, 2017. High-End Computing for
Next-Generation Scientific Discovery.

Jeremy Cohen, Thierry Rayna, and John Darlington. Understanding resource selection re-
quirements for computationally intensive tasks on heterogeneous computing infrastructure. In
José Angel Banares, Konstantinos Tserpes, and Jorn Altmann, editors, Economics of Grids,
Clouds, Systems, and Services, pages 250-262, Cham, 2017. Springer International Publishing.

Simone Campanoni, Martino Sykora, Giovanni Agosta, and Stefano Crespi Reghizzi. Dynamic
look ahead compilation: a technique to hide jit compilation latencies in multicore environment.
In International conference on compiler construction, pages 220-235. Springer, 2009.

Doug Binks, Matthew Jack, and Will Wilson. Runtime compiled c++ for rapid ai development.
Game Al Pro: Collected Wisdom of Game AI Professionals, page 201, 2013.

Stefano Cherubin and Giovanni Agosta. libVersioningCompiler: An easy-to-use library for dy-
namic generation and invocation of multiple code versions. SoftwareX, 7:95 — 100, 2018.

Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier Temam, and
Chengyong Wu. Evaluating iterative optimization across 1000 datasets. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
10, pages 448-459, New York, NY, USA, 2010. ACM.

Michele Tartara and Stefano Crespi Reghizzi. Continuous learning of compiler heuristics. ACM
Trans. Archit. Code Optim., 9(4):46:1-46:25, January 2013.

Davide Gadioli, Gianluca Palermo, and Cristina Silvano. Application autotuning to support
runtime adaptivity in multicore architectures. In Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), 2015 International Conference on, pages 173-180. IEEE,
2015.

Grigori Fursin, Anton Lokhmotov, and Ed Plowman. Collective Knowledge: towards R&D
sustainability. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’16), pages 864-869, March 2016.

A. Cohen and E. Rohou. Processor virtualization and split compilation for heterogeneous multi-
core embedded systems. In Design Automation Conference, pages 102-107, June 2010.

Tomofumi Yuki. Understanding PolyBench/C 3.2 kernels. In International workshop on Polyhe-
dral Compilation Techniques (IMPACT), pages 1-5, 2014.

Cristina Silvano, Giovanni Agosta, Stefano Cherubin, Davide Gadioli, Gianluca Palermo, Andrea
Bartolini, Luca Benini, Jan Martinovi¢, Martin Palkovi¢, Katefina Slaninova, et al. The antarex
approach to autotuning and adaptivity for energy efficient hpc systems. In Proceedings of the
ACM International Conference on Computing Frontiers, CF ’16, pages 288-293, New York, NY,
USA, 2016. ACM.

Andrea R Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele Costantino. Ligen: a high
performance workflow for chemistry driven de novo design, 2013.

P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom, L. Saldamli, D. Broman, and A. Sand-
holm. Openmodelica - a free open-source environment for system modeling, simulation, and
teaching. In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006 IEEE International Symposium on In-
telligent Control, pages 1588-1595, Oct 2006.

4.12

23] Francesco Casella. Simulation of large-scale models in modelica: State of the art and future
perspectives. In LINKOPING ELECTRONIC CONFERENCE PROCEEDINGS, pages 459468,
2015.

4.13

	Motivation
	Background and Related Works
	libVersioningCompiler
	Software Architecture
	Usage Examples
	ANTAREX DSL Integration

	Experimental Evaluation
	Conclusions

